1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *-------------------------------------------------------------------- |
---|
16 | * Author: Gerson Balbueno Bicca |
---|
17 | * $Id $ |
---|
18 | *--------------------------------------------------------------------*# |
---|
19 | |
---|
20 | using "heat_exchangers/HEX_Engine"; |
---|
21 | |
---|
22 | Model Heatex_Basic |
---|
23 | |
---|
24 | ATTRIBUTES |
---|
25 | Pallete = false; |
---|
26 | Brief = "Basic Model for Simplified Heat Exchangers"; |
---|
27 | Info = |
---|
28 | "to be documented."; |
---|
29 | |
---|
30 | PARAMETERS |
---|
31 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
32 | outer NComp as Integer (Brief="Number of Components"); |
---|
33 | |
---|
34 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
35 | |
---|
36 | VARIABLES |
---|
37 | |
---|
38 | in InletHot as stream (Brief="Inlet Hot Stream", PosX=0, PosY=0.4915, Symbol="^{inHot}"); |
---|
39 | out OutletHot as streamPH (Brief="Outlet Hot Stream", PosX=1, PosY=0.4915, Symbol="^{outHot}"); |
---|
40 | in InletCold as stream (Brief="Inlet Cold Stream", PosX=0.5237, PosY=1, Symbol="^{inCold}"); |
---|
41 | out OutletCold as streamPH (Brief="Outlet Cold Stream", PosX=0.5237, PosY=0, Symbol="^{outCold}"); |
---|
42 | |
---|
43 | xh(NComp) as fraction (Brief = "Liquid Molar Fraction in Hot Side"); |
---|
44 | yh(NComp) as fraction (Brief = "Vapour Molar Fraction in Hot Side"); |
---|
45 | vh as fraction (Brief = "Vapour Fraction in Hot Side"); |
---|
46 | |
---|
47 | xc(NComp) as fraction (Brief = "Liquid Molar Fraction in Cold Side"); |
---|
48 | yc(NComp) as fraction (Brief = "Vapour Molar Fraction in Cold Side"); |
---|
49 | vc as fraction (Brief = "Vapour Fraction in Cold Side"); |
---|
50 | |
---|
51 | Details as Details_Main (Brief="Heat Exchanger Details", Symbol=" "); |
---|
52 | HotSide as Main_Simplified (Brief="Heat Exchanger Hot Side", Symbol="_{hot}"); |
---|
53 | ColdSide as Main_Simplified (Brief="Heat Exchanger Cold Side", Symbol="_{cold}"); |
---|
54 | |
---|
55 | SET |
---|
56 | |
---|
57 | #"Component Molecular Weight" |
---|
58 | M = PP.MolecularWeight(); |
---|
59 | |
---|
60 | EQUATIONS |
---|
61 | |
---|
62 | "Flash Calculation in Hot Side" |
---|
63 | [vh, xh, yh] = PP.Flash(InletHot.T, InletHot.P, InletHot.z); |
---|
64 | |
---|
65 | "Flash Calculation in Cold Side" |
---|
66 | [vc, xc, yc] = PP.Flash(InletCold.T, InletCold.P, InletCold.z); |
---|
67 | |
---|
68 | "Hot Stream Average Temperature" |
---|
69 | HotSide.Properties.Average.T = 0.5*InletHot.T + 0.5*OutletHot.T; |
---|
70 | |
---|
71 | "Cold Stream Average Temperature" |
---|
72 | ColdSide.Properties.Average.T = 0.5*InletCold.T + 0.5*OutletCold.T; |
---|
73 | |
---|
74 | "Hot Stream Average Pressure" |
---|
75 | HotSide.Properties.Average.P = 0.5*InletHot.P+0.5*OutletHot.P; |
---|
76 | |
---|
77 | "Cold Stream Average Pressure" |
---|
78 | ColdSide.Properties.Average.P = 0.5*InletCold.P+0.5*OutletCold.P; |
---|
79 | |
---|
80 | "Cold Stream Wall Temperature" |
---|
81 | ColdSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
82 | |
---|
83 | "Hot Stream Wall Temperature" |
---|
84 | HotSide.Properties.Wall.Twall = 0.5*HotSide.Properties.Average.T + 0.5*ColdSide.Properties.Average.T; |
---|
85 | |
---|
86 | "Hot Stream Average Molecular Weight" |
---|
87 | HotSide.Properties.Average.Mw = sum(M*InletHot.z); |
---|
88 | |
---|
89 | "Cold Stream Average Molecular Weight" |
---|
90 | ColdSide.Properties.Average.Mw = sum(M*InletCold.z); |
---|
91 | |
---|
92 | "Cold Stream Average Heat Capacity" |
---|
93 | ColdSide.Properties.Average.Cp = (1-InletCold.v)*PP.LiquidCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,xc) + |
---|
94 | InletCold.v*PP.VapourCp(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,yc); |
---|
95 | |
---|
96 | "Cold Stream Average Mass Density" |
---|
97 | ColdSide.Properties.Average.rho = (1-InletCold.v)*PP.LiquidDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,xc)+ |
---|
98 | InletCold.v*PP.VapourDensity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,yc); |
---|
99 | |
---|
100 | "Cold Stream Inlet Mass Density" |
---|
101 | ColdSide.Properties.Inlet.rho = (1-InletCold.v)*PP.LiquidDensity(InletCold.T,InletCold.P,xc)+ |
---|
102 | InletCold.v*PP.VapourDensity(InletCold.T,InletCold.P,yc); |
---|
103 | |
---|
104 | "Cold Stream Outlet Mass Density" |
---|
105 | ColdSide.Properties.Outlet.rho = (1-OutletCold.v)*PP.LiquidDensity(OutletCold.T,OutletCold.P,OutletCold.x)+ |
---|
106 | OutletCold.v*PP.VapourDensity(OutletCold.T,OutletCold.P,OutletCold.y); |
---|
107 | |
---|
108 | "Cold Stream Average Viscosity" |
---|
109 | ColdSide.Properties.Average.Mu = (1-InletCold.v)*PP.LiquidViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,xc)+ |
---|
110 | InletCold.v*PP.VapourViscosity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,yc); |
---|
111 | |
---|
112 | "Cold Stream Average Conductivity" |
---|
113 | ColdSide.Properties.Average.K = (1-InletCold.v)*PP.LiquidThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,xc)+ |
---|
114 | InletCold.v*PP.VapourThermalConductivity(ColdSide.Properties.Average.T,ColdSide.Properties.Average.P,yc); |
---|
115 | |
---|
116 | "Cold Stream Viscosity at Wall Temperature" |
---|
117 | ColdSide.Properties.Wall.Mu = (1-InletCold.v)*PP.LiquidViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,xc)+ |
---|
118 | InletCold.v*PP.VapourViscosity(ColdSide.Properties.Wall.Twall,ColdSide.Properties.Average.P,yc); |
---|
119 | |
---|
120 | "Hot Stream Average Heat Capacity" |
---|
121 | HotSide.Properties.Average.Cp = (1-InletHot.v)*PP.LiquidCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,xc) + |
---|
122 | InletHot.v*PP.VapourCp(HotSide.Properties.Average.T,HotSide.Properties.Average.P,yc); |
---|
123 | |
---|
124 | "Hot Stream Average Mass Density" |
---|
125 | HotSide.Properties.Average.rho = (1-InletHot.v)*PP.LiquidDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,xc)+ |
---|
126 | InletHot.v*PP.VapourDensity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,yc); |
---|
127 | |
---|
128 | "Hot Stream Inlet Mass Density" |
---|
129 | HotSide.Properties.Inlet.rho = (1-InletHot.v)*PP.LiquidDensity(InletHot.T,InletHot.P,xc)+ |
---|
130 | InletHot.v*PP.VapourDensity(InletHot.T,InletHot.P,yc); |
---|
131 | |
---|
132 | "Hot Stream Outlet Mass Density" |
---|
133 | HotSide.Properties.Outlet.rho = (1-OutletHot.v)*PP.LiquidDensity(OutletHot.T,OutletHot.P,OutletHot.x)+ |
---|
134 | OutletHot.v*PP.VapourDensity(OutletHot.T,OutletHot.P,OutletHot.y); |
---|
135 | |
---|
136 | "Hot Stream Average Viscosity" |
---|
137 | HotSide.Properties.Average.Mu = (1-InletHot.v)*PP.LiquidViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,xc)+ |
---|
138 | InletHot.v*PP.VapourViscosity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,yc); |
---|
139 | |
---|
140 | "Hot Stream Average Conductivity" |
---|
141 | HotSide.Properties.Average.K = (1-InletHot.v)*PP.LiquidThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,xc)+ |
---|
142 | InletHot.v*PP.VapourThermalConductivity(HotSide.Properties.Average.T,HotSide.Properties.Average.P,yc); |
---|
143 | |
---|
144 | "Hot Stream Viscosity at Wall Temperature" |
---|
145 | HotSide.Properties.Wall.Mu = (1-InletHot.v)*PP.LiquidViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,xc)+ |
---|
146 | InletHot.v*PP.VapourViscosity(HotSide.Properties.Wall.Twall,HotSide.Properties.Average.P,yc); |
---|
147 | |
---|
148 | "Energy Balance Hot Stream" |
---|
149 | Details.Q = InletHot.F*(InletHot.h-OutletHot.h); |
---|
150 | |
---|
151 | "Energy Balance Cold Stream" |
---|
152 | Details.Q =-InletCold.F*(InletCold.h-OutletCold.h); |
---|
153 | |
---|
154 | "Flow Mass Inlet Cold Stream" |
---|
155 | ColdSide.Properties.Inlet.Fw = sum(M*InletCold.z)*InletCold.F; |
---|
156 | |
---|
157 | "Flow Mass Outlet Cold Stream" |
---|
158 | ColdSide.Properties.Outlet.Fw = sum(M*OutletCold.z)*OutletCold.F; |
---|
159 | |
---|
160 | "Flow Mass Inlet Hot Stream" |
---|
161 | HotSide.Properties.Inlet.Fw = sum(M*InletHot.z)*InletHot.F; |
---|
162 | |
---|
163 | "Flow Mass Outlet Hot Stream" |
---|
164 | HotSide.Properties.Outlet.Fw = sum(M*OutletHot.z)*OutletHot.F; |
---|
165 | |
---|
166 | "Molar Balance Hot Stream" |
---|
167 | InletHot.F = OutletHot.F; |
---|
168 | |
---|
169 | "Molar Balance Cold Stream" |
---|
170 | InletCold.F = OutletCold.F; |
---|
171 | |
---|
172 | "Hot Stream Molar Fraction Constraint" |
---|
173 | OutletHot.z = InletHot.z; |
---|
174 | |
---|
175 | "Cold Stream Molar Fraction Constraint" |
---|
176 | OutletCold.z = InletCold.z; |
---|
177 | |
---|
178 | "Pressure Drop Hot Stream" |
---|
179 | OutletHot.P = InletHot.P - HotSide.PressureDrop.Pdrop; |
---|
180 | |
---|
181 | "Pressure Drop Cold Stream" |
---|
182 | OutletCold.P = InletCold.P - ColdSide.PressureDrop.Pdrop; |
---|
183 | |
---|
184 | "Fraction of Inlet Pressure : Hot Stream" |
---|
185 | HotSide.PressureDrop.Pdrop = InletHot.P*HotSide.PressureDrop.FPdrop; |
---|
186 | |
---|
187 | "Fraction of Inlet Pressure : Cold Stream" |
---|
188 | ColdSide.PressureDrop.Pdrop = InletCold.P*ColdSide.PressureDrop.FPdrop; |
---|
189 | |
---|
190 | end |
---|
191 | |
---|
192 | Model Heatex_LMTD as Heatex_Basic |
---|
193 | |
---|
194 | ATTRIBUTES |
---|
195 | Pallete = true; |
---|
196 | Icon = "icon/HeatExchanger_LMTD"; |
---|
197 | Brief = "Simplified model for Heat Exchangers"; |
---|
198 | Info = |
---|
199 | "to be documented."; |
---|
200 | |
---|
201 | PARAMETERS |
---|
202 | |
---|
203 | ExchangerType as Switcher (Brief="Type of Heat Exchanger",Valid=["Counter Flow","Cocurrent Flow", "Shell and Tube"],Default="Cocurrent Flow"); |
---|
204 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakheri"],Default="Bowmann"); |
---|
205 | |
---|
206 | VARIABLES |
---|
207 | |
---|
208 | Method as LMTD_Basic (Brief="LMTD Method of Calculation", Symbol =" "); |
---|
209 | R as positive (Brief="Capacity Ratio for LMTD Correction Fator",Lower=1e-6); |
---|
210 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6); |
---|
211 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakheri Equation",Lower=1e-6); |
---|
212 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakheri Equation",Lower=1e-6, Symbol ="\phi"); |
---|
213 | |
---|
214 | EQUATIONS |
---|
215 | |
---|
216 | "Duty" |
---|
217 | Details.Q = Details.Ud*Details.A*Method.LMTD*Method.Fc; |
---|
218 | |
---|
219 | switch ExchangerType |
---|
220 | |
---|
221 | case "Cocurrent Flow": |
---|
222 | |
---|
223 | "Temperature Difference at Inlet" |
---|
224 | Method.DT0 = InletHot.T - InletCold.T; |
---|
225 | |
---|
226 | "Temperature Difference at Outlet" |
---|
227 | Method.DTL = OutletHot.T - OutletCold.T; |
---|
228 | |
---|
229 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
230 | R=1; |
---|
231 | |
---|
232 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
233 | P=1; |
---|
234 | |
---|
235 | " Variable useless with this model" |
---|
236 | Phi = 1; |
---|
237 | |
---|
238 | " Variable useless with this model" |
---|
239 | Rho = 1; |
---|
240 | |
---|
241 | "LMTD Correction Factor in Cocurrent Flow" |
---|
242 | Method.Fc = 1; |
---|
243 | |
---|
244 | case "Counter Flow": |
---|
245 | |
---|
246 | "Temperature Difference at Inlet" |
---|
247 | Method.DT0 = InletHot.T - OutletCold.T; |
---|
248 | |
---|
249 | "Temperature Difference at Outlet" |
---|
250 | Method.DTL = OutletHot.T - InletCold.T; |
---|
251 | |
---|
252 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
253 | R=1; |
---|
254 | |
---|
255 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
256 | P=1; |
---|
257 | |
---|
258 | " Variable useless with this model" |
---|
259 | Phi = 1; |
---|
260 | |
---|
261 | " Variable useless with this model" |
---|
262 | Rho = 1; |
---|
263 | |
---|
264 | "LMTD Correction Factor in Counter Flow" |
---|
265 | Method.Fc = 1; |
---|
266 | |
---|
267 | case "Shell and Tube": |
---|
268 | |
---|
269 | "Temperature Difference at Inlet" |
---|
270 | Method.DT0 = InletHot.T - OutletCold.T; |
---|
271 | |
---|
272 | "Temperature Difference at Outlet" |
---|
273 | Method.DTL = OutletHot.T - InletCold.T; |
---|
274 | |
---|
275 | switch LMTDcorrection |
---|
276 | |
---|
277 | case "Bowmann": |
---|
278 | |
---|
279 | " Variable not in use with Bowmann equation" |
---|
280 | Phi = 1; |
---|
281 | |
---|
282 | " Variable not in use with Bowmann equation" |
---|
283 | Rho = 1; |
---|
284 | |
---|
285 | "R: Capacity Ratio for LMTD Correction Fator when Shell and Tube" |
---|
286 | R*(OutletCold.T - InletCold.T ) = (InletHot.T-OutletHot.T); |
---|
287 | |
---|
288 | "P: Non - Dimensional Variable for LMTD Correction Fator when Shell and Tube" |
---|
289 | P*(InletHot.T- InletCold.T)= (OutletCold.T-InletCold.T); |
---|
290 | |
---|
291 | if R equal 1 |
---|
292 | |
---|
293 | then |
---|
294 | |
---|
295 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
296 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
297 | |
---|
298 | else |
---|
299 | |
---|
300 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
301 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
302 | |
---|
303 | end |
---|
304 | |
---|
305 | case "Fakheri": |
---|
306 | |
---|
307 | "R: Capacity Ratio for LMTD Correction Fator when Shell and Tube" |
---|
308 | R*(OutletCold.T - InletCold.T ) = (InletHot.T-OutletHot.T); |
---|
309 | |
---|
310 | "P: Non - Dimensional Variable for LMTD Correction Fator when Shell and Tube" |
---|
311 | P*(InletHot.T- InletCold.T)= (OutletCold.T-InletCold.T); |
---|
312 | |
---|
313 | "Non Dimensional Variable for LMTD Correction Fator in Fakheri Equation " |
---|
314 | Phi = (sqrt(((InletHot.T- OutletHot.T)*(InletHot.T- OutletHot.T))+((OutletCold.T - InletCold.T)*(OutletCold.T - InletCold.T))))/(2*((InletHot.T+ OutletHot.T)-(InletCold.T+ OutletCold.T))); |
---|
315 | |
---|
316 | "Non Dimensional Variable for LMTD Correction Fator in Fakheri Equation" |
---|
317 | Rho*(1-P*R) = (1-P); |
---|
318 | |
---|
319 | if Rho equal 1 |
---|
320 | |
---|
321 | then |
---|
322 | |
---|
323 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
324 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
325 | |
---|
326 | else |
---|
327 | |
---|
328 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
329 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
330 | |
---|
331 | end |
---|
332 | |
---|
333 | end |
---|
334 | |
---|
335 | end |
---|
336 | |
---|
337 | end |
---|
338 | |
---|
339 | Model Heatex_NTU as Heatex_Basic |
---|
340 | |
---|
341 | ATTRIBUTES |
---|
342 | Pallete = true; |
---|
343 | Icon = "icon/HeatExchanger_NTU"; |
---|
344 | Brief = "Simplified model for Heat Exchangers"; |
---|
345 | Info = |
---|
346 | "to be documented."; |
---|
347 | |
---|
348 | PARAMETERS |
---|
349 | |
---|
350 | ExchangerType as Switcher (Brief="Type of Heat Exchanger",Valid=["Counter Flow","Cocurrent Flow", "Shell and Tube"],Default="Cocurrent Flow"); |
---|
351 | |
---|
352 | VARIABLES |
---|
353 | |
---|
354 | Method as NTU_Basic (Brief="NTU Method of Calculation", Symbol =" "); |
---|
355 | |
---|
356 | EQUATIONS |
---|
357 | |
---|
358 | "Number of Units Transference" |
---|
359 | Method.NTU*Method.Cmin = Details.Ud*Details.A; |
---|
360 | |
---|
361 | "Minimum Heat Capacity" |
---|
362 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
363 | |
---|
364 | "Maximum Heat Capacity" |
---|
365 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
366 | |
---|
367 | "Thermal Capacity Ratio" |
---|
368 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
369 | |
---|
370 | "Duty" |
---|
371 | Details.Q = Method.Eft*Method.Cmin*(InletHot.T-InletCold.T); |
---|
372 | |
---|
373 | "Hot Stream Heat Capacity" |
---|
374 | Method.Ch = InletHot.F*HotSide.Properties.Average.Cp; |
---|
375 | |
---|
376 | "Cold Stream Heat Capacity" |
---|
377 | Method.Cc = InletCold.F*ColdSide.Properties.Average.Cp; |
---|
378 | |
---|
379 | "Effectiveness Correction" |
---|
380 | Method.Eft1 = 1; |
---|
381 | |
---|
382 | if Method.Cr equal 0 |
---|
383 | |
---|
384 | then |
---|
385 | |
---|
386 | "Effectiveness" |
---|
387 | Method.Eft = 1-exp(-Method.NTU); |
---|
388 | |
---|
389 | else |
---|
390 | |
---|
391 | switch ExchangerType |
---|
392 | |
---|
393 | case "Cocurrent Flow": |
---|
394 | |
---|
395 | "Effectiveness in Cocurrent Flow" |
---|
396 | Method.Eft = (1-exp(-Method.NTU*(1+Method.Cr)))/(1+Method.Cr); |
---|
397 | |
---|
398 | case "Counter Flow": |
---|
399 | |
---|
400 | if Method.Cr equal 1 |
---|
401 | |
---|
402 | then |
---|
403 | "Effectiveness in Counter Flow" |
---|
404 | Method.Eft = Method.NTU/(1+Method.NTU); |
---|
405 | |
---|
406 | else |
---|
407 | "Effectiveness in Counter Flow" |
---|
408 | Method.Eft = (1-exp(-Method.NTU*(1-Method.Cr)))/(1-Method.Cr*exp(-Method.NTU*(1-Method.Cr))); |
---|
409 | |
---|
410 | end |
---|
411 | |
---|
412 | case "Shell and Tube": |
---|
413 | |
---|
414 | "TEMA E Shell Effectiveness" |
---|
415 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^-1; |
---|
416 | |
---|
417 | end |
---|
418 | |
---|
419 | |
---|
420 | end |
---|
421 | |
---|
422 | end |
---|
423 | |
---|