1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: HeatExchangerDetailed.mso 197 2007-03-08 14:31:57Z bicca $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | using "heat_exchangers/HEX_Engine"; |
---|
19 | |
---|
20 | Model ShellandTubesBasic |
---|
21 | |
---|
22 | ATTRIBUTES |
---|
23 | Pallete = false; |
---|
24 | Brief = "Basic Model for Detailed Shell and Tubes Heat Exchangers"; |
---|
25 | Info = |
---|
26 | "to be documented."; |
---|
27 | |
---|
28 | PARAMETERS |
---|
29 | |
---|
30 | HotSide as Switcher (Brief="Hot Side in the Exchanger",Valid=["shell","tubes"],Default="shell"); |
---|
31 | ShellType as Switcher (Brief="TEMA Designation",Valid=["Eshell","Fshell"],Default="Eshell"); |
---|
32 | |
---|
33 | VARIABLES |
---|
34 | |
---|
35 | in InletTube as stream (Brief="Inlet Tube Stream", PosX=0.08, PosY=0, Symbol="_{inTube}"); |
---|
36 | out OutletTube as streamPH (Brief="Outlet Tube Stream", PosX=0.08, PosY=1, Symbol="_{outTube}"); |
---|
37 | in InletShell as stream (Brief="Inlet Shell Stream", PosX=0.2237, PosY=0, Symbol="_{inShell}"); |
---|
38 | out OutletShell as streamPH (Brief="Outlet Shell Stream", PosX=0.8237, PosY=1, Symbol="_{outShell}"); |
---|
39 | |
---|
40 | Details as Details_Main (Brief="Details in Heat Exchanger"); |
---|
41 | Tubes as Tube_Side_Main (Brief="Tube Side"); |
---|
42 | Shell as Shell_Side_Main (Brief="Shell Side"); |
---|
43 | Baffles as Baffles_Main (Brief="Baffles"); |
---|
44 | |
---|
45 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
46 | # Auxiliar Variables - Must be hidden |
---|
47 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
48 | Nc as Real (Brief = "Number of Tube rows Crossed in one Crossflow Section",Lower=1); |
---|
49 | Ncw as Real (Brief = "Number of Effective Crossflow rows in Each Window",Lower=1); |
---|
50 | a as Real (Brief = "Variable for calculating Ji heat transfer correction Factor",Lower=1e-3); |
---|
51 | b as Real (Brief = "Variable for calculating shell side pressure drop friction Factor",Lower=1e-3); |
---|
52 | Rb as Real (Brief = "ByPass Correction Factor for Pressure Drop",Lower=1e-3); |
---|
53 | Rss as Real (Brief = "Correction Factor for Pressure Drop",Lower=1e-3); |
---|
54 | Rspd as Real (Brief = "Pressure Drop Correction Factor for Unequal Baffle Spacing",Lower=1e-3); |
---|
55 | mw as Real (Brief = "Mass Velocity in Window Zone", Unit='kg/m^2/s'); |
---|
56 | |
---|
57 | PARAMETERS |
---|
58 | outer PP as Plugin (Brief="External Physical Properties",Type = "PP"); |
---|
59 | outer NComp as Integer (Brief="Number of Components"); |
---|
60 | |
---|
61 | Pi as constant (Brief="Pi Number",Default=3.14159265); |
---|
62 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
63 | |
---|
64 | TubeFlowRegime as Switcher (Brief="Tube Side Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
65 | ShellFlowRegime as Switcher (Brief="Shell Side Flow Regime ",Valid=["deep laminar","laminar","turbulent"],Default="deep laminar"); |
---|
66 | ShellRange as Switcher (Brief="Shell Side Flow Regime Range for Correction Factor",Valid=["range1","range2","range3", "range4","range5"],Default="range1"); |
---|
67 | Side as Switcher (Brief="Flag for Fluid Alocation ",Valid=["shell","tubes"],Default="shell"); |
---|
68 | LaminarCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Laminar Flow",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
69 | TransitionCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Transition Flow",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); |
---|
70 | TurbulentCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Turbulent Flow",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
71 | |
---|
72 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
73 | # Shell Geometrical Parameters |
---|
74 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
75 | Tpass as Integer (Brief="Number of Tube Passes",Lower=1); |
---|
76 | Nss as Integer (Brief="Number of Sealing Strips pairs",Lower=1); |
---|
77 | Dishell as length (Brief="Inside Shell Diameter",Lower=10e-6); |
---|
78 | Donozzle_Shell as length (Brief="Shell Outlet Nozzle Diameter",Lower=10e-6); |
---|
79 | Dinozzle_Shell as length (Brief="Shell Inlet Nozzle Diameter",Lower=10e-6); |
---|
80 | Aonozzle_Shell as area (Brief="Shell Outlet Nozzle Area",Lower=10e-6); |
---|
81 | Ainozzle_Shell as area (Brief="Shell Inlet Nozzle Area",Lower=10e-6); |
---|
82 | Aeonozzle_Shell as area (Brief="Shell Outlet Escape Area Under Nozzle",Lower=10e-6); |
---|
83 | Aeinozzle_Shell as area (Brief="Shell Inlet Escape Area Under Nozzle",Lower=10e-6); |
---|
84 | Hinozzle_Shell as length (Brief="Height Under Shell Inlet Nozzle",Lower=10e-6); |
---|
85 | Honozzle_Shell as length (Brief="Height Under Shell Outlet Nozzle",Lower=10e-6); |
---|
86 | Lcf as length (Brief="Bundle-to-Shell Clearance",Lower=10e-8); |
---|
87 | |
---|
88 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
89 | # Tubes Geometrical Parameters |
---|
90 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
91 | Ntt as Integer (Brief="Total Number of Tubes in Shell",Default=100,Lower=1); |
---|
92 | Pattern as Switcher (Brief="Tube Layout Characteristic Angle",Valid=["Triangle","Rotated Square","Square"],Default="Triangle"); |
---|
93 | Ltube as length (Brief="Effective Tube Length",Lower=0.1); |
---|
94 | pitch as length (Brief="Tube Pitch",Lower=1e-8); |
---|
95 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity"); |
---|
96 | Dotube as length (Brief="Tube Outside Diameter",Lower=10e-6); |
---|
97 | Ditube as length (Brief="Tube Inside Diameter",Lower=10e-6); |
---|
98 | Donozzle_Tube as length (Brief="Tube Outlet Nozzle Diameter",Lower=10e-6); |
---|
99 | Dinozzle_Tube as length (Brief="Tube Inlet Nozzle Diameter",Lower=10e-6); |
---|
100 | Aonozzle_Tube as area (Brief="Tube Outlet Nozzle Area",Lower=10e-6); |
---|
101 | Ainozzle_Tube as area (Brief="Tube Inlet Nozzle Area",Lower=10e-6); |
---|
102 | Kinlet_Tube as positive (Brief="Tube Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
103 | Koutlet_Tube as positive (Brief="Tube Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
104 | |
---|
105 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
106 | # Baffles Geometrical Parameters |
---|
107 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
108 | Bc as Integer (Brief="Baffle Cut",Default=25,Lower=25); |
---|
109 | Nb as Real (Brief="Number of Baffles",Lower=1); |
---|
110 | Lcd as length (Brief="Baffle-to-Shell Clearance",Lower=10e-8); |
---|
111 | Ltd as length (Brief="Tube-to-Bafflehole Clearance",Lower=10e-8); |
---|
112 | |
---|
113 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
114 | # Fouling |
---|
115 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
116 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
117 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
118 | |
---|
119 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
120 | # Auxiliar Parameters - Must be hidden |
---|
121 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
122 | Ods as Real (Brief="Baffle Cut Angle in Degrees"); |
---|
123 | Octl as Real (Brief="Baffle Cut Angle relative to the centerline in Degrees"); |
---|
124 | Ftw as Real (Brief="Fraction of Number of Tubes in Baffle Window"); |
---|
125 | Scd as area (Brief="Shell to Baffle Leakage Area"); |
---|
126 | Std as area (Brief="Tube to Baffle Hole Leakage Area"); |
---|
127 | Rs as Real (Brief="Ratio of the shell to baffle leakage area"); |
---|
128 | Dw as length (Brief="Hydraulic diameter of the baffle window"); |
---|
129 | |
---|
130 | SET |
---|
131 | |
---|
132 | M = PP.MolecularWeight(); |
---|
133 | Pi = 3.14159265; |
---|
134 | |
---|
135 | #"comments" |
---|
136 | Ods = (360/Pi)*acos(1-0.02*Bc); |
---|
137 | |
---|
138 | #"comments" |
---|
139 | Octl = (360/Pi)*acos((Dishell/(Dishell - Lcf - Dotube))*(1-0.02*Bc)); |
---|
140 | |
---|
141 | #"comments" |
---|
142 | Ftw = (Octl/360)-sin(Octl*Pi/180)/(2*Pi); |
---|
143 | |
---|
144 | #"comments" |
---|
145 | Scd = Pi*Dishell*Lcd*((360-Ods)/720); |
---|
146 | |
---|
147 | #"comments" |
---|
148 | Std = Pi*0.25*((Ltd + Dotube)^2-Dotube*Dotube)*Ntt*(1-Ftw); |
---|
149 | |
---|
150 | #"comments" |
---|
151 | Rs = Scd/(Scd+Std); |
---|
152 | |
---|
153 | #"comments" |
---|
154 | Dw = (4*abs((Pi*Dishell*Dishell*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Ntt*Pi*Dotube*Dotube*Ftw/4)))/(Pi*Dotube*Ntt*Ftw+ Pi*Dishell*Ods/360); |
---|
155 | |
---|
156 | #"Tube Side Inlet Nozzle Area" |
---|
157 | Ainozzle_Tube = (Pi*Dinozzle_Tube*Dinozzle_Tube)/4; |
---|
158 | |
---|
159 | #"Tube Side Outlet Nozzle Area" |
---|
160 | Aonozzle_Tube = (Pi*Donozzle_Tube*Donozzle_Tube)/4; |
---|
161 | |
---|
162 | #"Tube Inlet Nozzle Pressure Loss Coeff" |
---|
163 | Kinlet_Tube = 1.1; |
---|
164 | |
---|
165 | #"Tube Outlet Nozzle Pressure Loss Coeff" |
---|
166 | Koutlet_Tube = 0.7; |
---|
167 | |
---|
168 | #"Shell Outlet Nozzle Area" |
---|
169 | Aonozzle_Shell = (Pi*Donozzle_Shell*Donozzle_Shell)/4; |
---|
170 | |
---|
171 | #"Shell Inlet Nozzle Area" |
---|
172 | Ainozzle_Shell = (Pi*Dinozzle_Shell*Dinozzle_Shell)/4; |
---|
173 | |
---|
174 | #"Shell Outlet Escape Area Under Nozzle" |
---|
175 | Aeonozzle_Shell = Pi*Donozzle_Shell*Honozzle_Shell + 0.6*Aonozzle_Shell*(1-(Dotube/pitch)); |
---|
176 | |
---|
177 | #"Shell Inlet Escape Area Under Nozzle" |
---|
178 | Aeinozzle_Shell = Pi*Dinozzle_Shell*Hinozzle_Shell + 0.6*Ainozzle_Shell*(1-(Dotube/pitch)); |
---|
179 | |
---|
180 | EQUATIONS |
---|
181 | |
---|
182 | "Shell Stream Average Temperature" |
---|
183 | Shell.Properties.Average.T = 0.5*InletShell.T + 0.5*OutletShell.T; |
---|
184 | |
---|
185 | "Tube Stream Average Temperature" |
---|
186 | Tubes.Properties.Average.T = 0.5*OutletTube.T + 0.5*OutletTube.T; |
---|
187 | |
---|
188 | "Shell Stream Average Pressure" |
---|
189 | Shell.Properties.Average.P = 0.5*InletShell.P+0.5*OutletShell.P; |
---|
190 | |
---|
191 | "Tube Stream Average Pressure" |
---|
192 | Tubes.Properties.Average.P = 0.5*OutletTube.P+0.5*OutletTube.P; |
---|
193 | |
---|
194 | "Shell Stream Average Molecular Weight" |
---|
195 | Shell.Properties.Average.Mw = sum(M*InletShell.z); |
---|
196 | |
---|
197 | "Tube Stream Average Molecular Weight" |
---|
198 | Tubes.Properties.Average.Mw = sum(M*OutletTube.z); |
---|
199 | |
---|
200 | if InletTube.v equal 0 |
---|
201 | |
---|
202 | then |
---|
203 | |
---|
204 | "Tube Stream Average Heat Capacity" |
---|
205 | Tubes.Properties.Average.Cp = PP.LiquidCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
206 | |
---|
207 | "Tube Stream Average Mass Density" |
---|
208 | Tubes.Properties.Average.rho = PP.LiquidDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
209 | |
---|
210 | "Tube Stream Inlet Mass Density" |
---|
211 | Tubes.Properties.Inlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
212 | |
---|
213 | "Tube Stream Outlet Mass Density" |
---|
214 | Tubes.Properties.Outlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
215 | |
---|
216 | "TubeStream Average Viscosity" |
---|
217 | Tubes.Properties.Average.Mu = PP.LiquidViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
218 | |
---|
219 | "Tube Stream Average Conductivity" |
---|
220 | Tubes.Properties.Average.K = PP.LiquidThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
221 | |
---|
222 | "Tube Stream Viscosity at Wall Temperature" |
---|
223 | Tubes.Properties.Wall.Mu = PP.LiquidViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
224 | |
---|
225 | else |
---|
226 | |
---|
227 | "Tube Stream Average Heat Capacity" |
---|
228 | Tubes.Properties.Average.Cp = PP.VapourCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
229 | |
---|
230 | "Tube Stream Average Mass Density" |
---|
231 | Tubes.Properties.Average.rho = PP.VapourDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
232 | |
---|
233 | "Tube Stream Inlet Mass Density" |
---|
234 | Tubes.Properties.Inlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
235 | |
---|
236 | "Tube Stream Outlet Mass Density" |
---|
237 | Tubes.Properties.Outlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
238 | |
---|
239 | "Tube Stream Average Viscosity " |
---|
240 | Tubes.Properties.Average.Mu = PP.VapourViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
241 | |
---|
242 | "Tube Stream Average Conductivity " |
---|
243 | Tubes.Properties.Average.K = PP.VapourThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
244 | |
---|
245 | "Tube Stream Viscosity at Wall Temperature" |
---|
246 | Tubes.Properties.Wall.Mu = PP.VapourViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
247 | |
---|
248 | end |
---|
249 | |
---|
250 | if InletShell.v equal 0 |
---|
251 | |
---|
252 | then |
---|
253 | |
---|
254 | "Shell Stream Average Heat Capacity" |
---|
255 | Shell.Properties.Average.Cp = PP.LiquidCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
256 | |
---|
257 | "Shell Stream Average Mass Density" |
---|
258 | Shell.Properties.Average.rho = PP.LiquidDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
259 | |
---|
260 | "ShellStream Inlet Mass Density" |
---|
261 | Shell.Properties.Inlet.rho = PP.LiquidDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
262 | |
---|
263 | "Shell Stream Outlet Mass Density" |
---|
264 | Shell.Properties.Outlet.rho = PP.LiquidDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
265 | |
---|
266 | "Shell Stream Average Viscosity" |
---|
267 | Shell.Properties.Average.Mu = PP.LiquidViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
268 | |
---|
269 | "Shell Stream Average Conductivity" |
---|
270 | Shell.Properties.Average.K = PP.LiquidThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
271 | |
---|
272 | "ShellStream Viscosity at Wall Temperature" |
---|
273 | Shell.Properties.Wall.Mu = PP.LiquidViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
274 | |
---|
275 | |
---|
276 | else |
---|
277 | |
---|
278 | "Shell Stream Average Heat Capacity" |
---|
279 | Shell.Properties.Average.Cp = PP.VapourCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
280 | |
---|
281 | "Shell Stream Average Mass Density" |
---|
282 | Shell.Properties.Average.rho = PP.VapourDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
283 | |
---|
284 | "Shell Stream Inlet Mass Density" |
---|
285 | Shell.Properties.Inlet.rho = PP.VapourDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
286 | |
---|
287 | "Shell Stream Outlet Mass Density" |
---|
288 | Shell.Properties.Outlet.rho = PP.VapourDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
289 | |
---|
290 | "Shell Stream Average Viscosity" |
---|
291 | Shell.Properties.Average.Mu = PP.VapourViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
292 | |
---|
293 | "Shell Stream Average Conductivity" |
---|
294 | Shell.Properties.Average.K = PP.VapourThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
295 | |
---|
296 | "Shell Stream Viscosity at Wall Temperature" |
---|
297 | Shell.Properties.Wall.Mu = PP.VapourViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
298 | |
---|
299 | end |
---|
300 | |
---|
301 | switch Side |
---|
302 | |
---|
303 | case "shell": |
---|
304 | |
---|
305 | "Energy Balance Hot Stream" |
---|
306 | Details.Q = InletShell.F*(InletShell.h-OutletShell.h); |
---|
307 | |
---|
308 | "Energy Balance Cold Stream" |
---|
309 | Details.Q =-InletTube.F*(InletTube.h-OutletTube.h); |
---|
310 | |
---|
311 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
312 | |
---|
313 | case "tubes": |
---|
314 | |
---|
315 | "Energy Balance Hot Stream" |
---|
316 | Details.Q = InletTube.F*(InletTube.h-OutletTube.h); |
---|
317 | |
---|
318 | "Energy Balance Cold Stream" |
---|
319 | Details.Q =-InletShell.F*(InletShell.h-OutletShell.h); |
---|
320 | |
---|
321 | when InletTube.T < InletShell.T switchto "shell"; |
---|
322 | |
---|
323 | end |
---|
324 | |
---|
325 | "Flow Mass Inlet Tube Stream" |
---|
326 | Tubes.Properties.Inlet.Fw = sum(M*InletTube.z)*InletTube.F; |
---|
327 | |
---|
328 | "Flow Mass Outlet Tube Stream" |
---|
329 | Tubes.Properties.Outlet.Fw = sum(M*OutletTube.z)*OutletTube.F; |
---|
330 | |
---|
331 | "Flow Mass Inlet Shell Stream" |
---|
332 | Shell.Properties.Inlet.Fw = sum(M*InletShell.z)*InletShell.F; |
---|
333 | |
---|
334 | "Flow Mass Outlet Shell Stream" |
---|
335 | Shell.Properties.Outlet.Fw = sum(M*OutletShell.z)*OutletShell.F; |
---|
336 | |
---|
337 | "Molar Balance Shell Stream" |
---|
338 | OutletShell.F = InletShell.F; |
---|
339 | |
---|
340 | "Molar Balance Tube Stream" |
---|
341 | OutletTube.F = InletTube.F; |
---|
342 | |
---|
343 | "Shell Stream Molar Fraction Constraint" |
---|
344 | OutletShell.z=InletShell.z; |
---|
345 | |
---|
346 | "Tube Stream Molar Fraction Constraint" |
---|
347 | OutletTube.z=InletTube.z; |
---|
348 | |
---|
349 | "Jc Factor" |
---|
350 | Shell.HeatTransfer.Jc = 0.55+0.72*(1-2*Ftw); |
---|
351 | |
---|
352 | "Jl Factor" |
---|
353 | Shell.HeatTransfer.Jl = 0.44*(1-Rs)+(1-0.44*(1-Rs))*exp(-2.2*(Scd + Std)/Shell.HeatTransfer.Sm); |
---|
354 | |
---|
355 | "Total J Factor" |
---|
356 | Shell.HeatTransfer.Jtotal = Shell.HeatTransfer.Jc*Shell.HeatTransfer.Jl*Shell.HeatTransfer.Jb*Shell.HeatTransfer.Jr*Shell.HeatTransfer.Js; |
---|
357 | |
---|
358 | "Mass Velocity in Window Zone" |
---|
359 | mw = Shell.Properties.Inlet.Fw/sqrt(abs(Shell.HeatTransfer.Sm*abs((Pi*Dishell*Dishell*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Ntt*Pi*Dotube*Dotube*Ftw/4)))); |
---|
360 | |
---|
361 | switch TubeFlowRegime |
---|
362 | |
---|
363 | case "laminar": |
---|
364 | |
---|
365 | "Friction Factor for heat Transfer: Not Necessary in Laminar Correlation - Use any one equation that you want" |
---|
366 | Tubes.HeatTransfer.fi = 16/Tubes.HeatTransfer.Re; |
---|
367 | |
---|
368 | "Friction Factor for Pressure Drop in Laminar Flow" |
---|
369 | Tubes.PressureDrop.fi = 16/Tubes.HeatTransfer.Re; |
---|
370 | |
---|
371 | switch LaminarCorrelation |
---|
372 | |
---|
373 | case "Hausen": |
---|
374 | |
---|
375 | "Nusselt Number in Laminar Flow - Hausen Equation" |
---|
376 | Tubes.HeatTransfer.Nu = 3.665 + ((0.19*((Ditube/Ltube)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.8)/(1+0.117*((Ditube/Ltube)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.467)); |
---|
377 | |
---|
378 | case "Schlunder": |
---|
379 | |
---|
380 | "Nusselt Number in Laminar Flow - Schlunder Equation" |
---|
381 | Tubes.HeatTransfer.Nu = (49.027896+4.173281*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR*(Ditube/Ltube))^(1/3); |
---|
382 | |
---|
383 | end |
---|
384 | |
---|
385 | when Tubes.HeatTransfer.Re > 2300 switchto "transition"; |
---|
386 | |
---|
387 | case "transition": |
---|
388 | |
---|
389 | "Friction Factor for heat Transfer : for use in Gnielinski Equation" |
---|
390 | Tubes.HeatTransfer.fi = 1/(0.79*ln(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
391 | |
---|
392 | "Friction Factor for Pressure Drop in Transition Flow" |
---|
393 | Tubes.PressureDrop.fi = 0.0122; |
---|
394 | |
---|
395 | switch TransitionCorrelation |
---|
396 | |
---|
397 | case "Gnielinski": |
---|
398 | |
---|
399 | "Nusselt Number in Transition Flow - Gnielinski Equation" |
---|
400 | Tubes.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*(Tubes.HeatTransfer.Re-1000)*Tubes.HeatTransfer.PR; |
---|
401 | |
---|
402 | case "ESDU": |
---|
403 | |
---|
404 | "Nusselt Number in Transition Flow - ESDU Equation" |
---|
405 | Tubes.HeatTransfer.Nu =1;#to be implemented |
---|
406 | |
---|
407 | end |
---|
408 | |
---|
409 | when Tubes.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
410 | when Tubes.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
411 | |
---|
412 | case "turbulent": |
---|
413 | |
---|
414 | "Friction Factor for heat Transfer : for use in Petukhov Equation" |
---|
415 | Tubes.HeatTransfer.fi = 1/(1.82*log(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
416 | |
---|
417 | "Friction Factor for Pressure Drop in Turbulent Flow" |
---|
418 | Tubes.PressureDrop.fi = 0.0035 + 0.264*Tubes.HeatTransfer.Re^(-0.42); |
---|
419 | |
---|
420 | switch TurbulentCorrelation |
---|
421 | |
---|
422 | case "Petukhov": |
---|
423 | |
---|
424 | "Nusselt Number in Turbulent Flow - Petukhov Equation" |
---|
425 | Tubes.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR; |
---|
426 | |
---|
427 | case "SiederTate": |
---|
428 | |
---|
429 | "Nusselt Number in Transition Flow - Sieder Tate Equation" |
---|
430 | Tubes.HeatTransfer.Nu = 0.027*(Tubes.HeatTransfer.PR)^(1/3)*(Tubes.HeatTransfer.Re)^(4/5); |
---|
431 | |
---|
432 | end |
---|
433 | |
---|
434 | when Tubes.HeatTransfer.Re < 10000 switchto "transition"; |
---|
435 | |
---|
436 | end |
---|
437 | |
---|
438 | switch Pattern |
---|
439 | |
---|
440 | case "Triangle": |
---|
441 | |
---|
442 | "Shell Side Cross Flow Area" |
---|
443 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/pitch)*(pitch-Dotube)); |
---|
444 | |
---|
445 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
446 | Nc = Dishell*(1-0.02*Bc)/(0.866*pitch); |
---|
447 | |
---|
448 | "Number of Effective Crossflow rows in Each Window" |
---|
449 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/(0.866*pitch); |
---|
450 | |
---|
451 | "Variable for calculating Ji heat transfer correction Factor" |
---|
452 | a = 1.45/(1+0.14*Shell.HeatTransfer.Re^0.519); |
---|
453 | |
---|
454 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
455 | b=7/(1+0.14*Shell.HeatTransfer.Re^0.5); |
---|
456 | |
---|
457 | "Correction Factor for Pressure Drop" |
---|
458 | Rss = Nss/(Dishell*(1-0.02*Bc)/(0.866*pitch)) ; |
---|
459 | |
---|
460 | "Ideal Shell Side Pressure Drop" |
---|
461 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/(0.866*pitch))*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
462 | |
---|
463 | "Shell Pressure End Zones" |
---|
464 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/(0.866*pitch))))*Rb*Rspd; |
---|
465 | |
---|
466 | switch ShellRange |
---|
467 | |
---|
468 | case "range1": |
---|
469 | |
---|
470 | "Ji Factor" |
---|
471 | Shell.HeatTransfer.Ji =1.40*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
472 | |
---|
473 | "Shell Side Pressure Drop Friction Factor" |
---|
474 | Shell.PressureDrop.fi=48*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
475 | |
---|
476 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
477 | |
---|
478 | case "range2": |
---|
479 | |
---|
480 | "Ji Factor" |
---|
481 | Shell.HeatTransfer.Ji =1.36*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.657; |
---|
482 | |
---|
483 | "Shell Side Pressure Drop Friction Factor" |
---|
484 | Shell.PressureDrop.fi=45.10*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.973; |
---|
485 | |
---|
486 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
487 | |
---|
488 | case "range3": |
---|
489 | |
---|
490 | "Ji Factor" |
---|
491 | Shell.HeatTransfer.Ji =0.593*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.477; |
---|
492 | |
---|
493 | "Shell Side Pressure Drop Friction Factor" |
---|
494 | Shell.PressureDrop.fi=4.570*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.476; |
---|
495 | |
---|
496 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
497 | |
---|
498 | case "range4": |
---|
499 | |
---|
500 | "Ji Factor" |
---|
501 | Shell.HeatTransfer.Ji =0.321*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.388; |
---|
502 | |
---|
503 | "Shell Side Pressure Drop Friction Factor" |
---|
504 | Shell.PressureDrop.fi=0.486*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.152; |
---|
505 | |
---|
506 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
507 | |
---|
508 | case "range5": |
---|
509 | |
---|
510 | "Ji Factor" |
---|
511 | Shell.HeatTransfer.Ji =0.321*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.388; |
---|
512 | |
---|
513 | "Shell Side Pressure Drop Friction Factor" |
---|
514 | Shell.PressureDrop.fi=0.372*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.123; |
---|
515 | |
---|
516 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
517 | |
---|
518 | end |
---|
519 | |
---|
520 | case "Rotated Square": |
---|
521 | |
---|
522 | "Shell Side Cross Flow Area" |
---|
523 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/(0.707*pitch))*(pitch-Dotube)); |
---|
524 | |
---|
525 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
526 | Nc = Dishell*(1-0.02*Bc)/(0.707*pitch); |
---|
527 | |
---|
528 | "Number of Effective Crossflow rows in Each Window" |
---|
529 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/(0.707*pitch); |
---|
530 | |
---|
531 | "Variable for calculating Ji heat transfer correction Factor" |
---|
532 | a = 1.930/(1+0.14*Shell.HeatTransfer.Re^0.500); |
---|
533 | |
---|
534 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
535 | b=6.59/(1+0.14*Shell.HeatTransfer.Re^0.52); |
---|
536 | |
---|
537 | "Correction Factor for Pressure Drop" |
---|
538 | Rss = Nss/(Dishell*(1-0.02*Bc)/(0.707*pitch)) ; |
---|
539 | |
---|
540 | "Ideal Shell Side Pressure Drop" |
---|
541 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/(0.707*pitch))*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
542 | |
---|
543 | "Shell Pressure End Zones" |
---|
544 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/(0.707*pitch))))*Rb*Rspd; |
---|
545 | |
---|
546 | switch ShellRange |
---|
547 | |
---|
548 | case "range1": |
---|
549 | |
---|
550 | "Ji Factor" |
---|
551 | Shell.HeatTransfer.Ji =1.550*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
552 | |
---|
553 | "Shell Side Pressure Drop Friction Factor" |
---|
554 | Shell.PressureDrop.fi=32*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
555 | |
---|
556 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
557 | |
---|
558 | case "range2": |
---|
559 | |
---|
560 | "Ji Factor" |
---|
561 | Shell.HeatTransfer.Ji =0.498*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.656; |
---|
562 | |
---|
563 | "Shell Side Pressure Drop Friction Factor" |
---|
564 | Shell.PressureDrop.fi=26.20*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.913; |
---|
565 | |
---|
566 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
567 | |
---|
568 | case "range3": |
---|
569 | |
---|
570 | "Ji Factor" |
---|
571 | Shell.HeatTransfer.Ji =0.730*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^0.500; |
---|
572 | |
---|
573 | "Shell Side Pressure Drop Friction Factor" |
---|
574 | Shell.PressureDrop.fi=3.50*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.476; |
---|
575 | |
---|
576 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
577 | |
---|
578 | case "range4": |
---|
579 | |
---|
580 | "Ji Factor" |
---|
581 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.396; |
---|
582 | |
---|
583 | "Shell Side Pressure Drop Friction Factor" |
---|
584 | Shell.PressureDrop.fi=0.333*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.136; |
---|
585 | |
---|
586 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
587 | |
---|
588 | case "range5": |
---|
589 | |
---|
590 | "Ji Factor" |
---|
591 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.396; |
---|
592 | |
---|
593 | "Shell Side Pressure Drop Friction Factor" |
---|
594 | Shell.PressureDrop.fi=0.303*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.126; |
---|
595 | |
---|
596 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
597 | |
---|
598 | end |
---|
599 | |
---|
600 | case "Square": |
---|
601 | |
---|
602 | "Shell Side Cross Flow Area" |
---|
603 | Shell.HeatTransfer.Sm= Baffles.Ls*(Lcf+((Dishell-Lcf-Dotube)/pitch)*(pitch-Dotube)); |
---|
604 | |
---|
605 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
606 | Nc = Dishell*(1-0.02*Bc)/pitch; |
---|
607 | |
---|
608 | "Number of Effective Crossflow rows in Each Window" |
---|
609 | Ncw = 0.8*(Dishell*0.01*Bc-(Lcf + Dotube)*0.5)/pitch; |
---|
610 | |
---|
611 | "Variable for calculating Ji heat transfer correction Factor" |
---|
612 | a = 1.187/(1+0.14*Shell.HeatTransfer.Re^0.370); |
---|
613 | |
---|
614 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
615 | b=6.30/(1+0.14*Shell.HeatTransfer.Re^0.38); |
---|
616 | |
---|
617 | "Correction Factor for Pressure Drop" |
---|
618 | Rss = Nss/(Dishell*(1-0.02*Bc)/pitch) ; |
---|
619 | |
---|
620 | "Ideal Shell Side Pressure Drop" |
---|
621 | Shell.PressureDrop.Pideal= 2*Shell.PressureDrop.fi*(Dishell*(1-0.02*Bc)/pitch)*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
622 | |
---|
623 | "Shell Pressure End Zones" |
---|
624 | Shell.PressureDrop.PdEndZones = Shell.PressureDrop.Pideal*(1+ (Ncw/(Dishell*(1-0.02*Bc)/pitch)))*Rb*Rspd; |
---|
625 | |
---|
626 | switch ShellRange |
---|
627 | |
---|
628 | case "range1": |
---|
629 | |
---|
630 | "Ji Factor" |
---|
631 | Shell.HeatTransfer.Ji =0.970*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.667; |
---|
632 | |
---|
633 | "Shell Side Pressure Drop Friction Factor" |
---|
634 | Shell.PressureDrop.fi=35*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-1; |
---|
635 | |
---|
636 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
637 | |
---|
638 | case "range2": |
---|
639 | |
---|
640 | "Ji Factor" |
---|
641 | Shell.HeatTransfer.Ji =0.900*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.631; |
---|
642 | |
---|
643 | "Shell Side Pressure Drop Friction Factor" |
---|
644 | Shell.PressureDrop.fi=32.10*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.963; |
---|
645 | |
---|
646 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
647 | |
---|
648 | case "range3": |
---|
649 | |
---|
650 | "Ji Factor" |
---|
651 | Shell.HeatTransfer.Ji =0.408*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.460; |
---|
652 | |
---|
653 | "Shell Side Pressure Drop Friction Factor" |
---|
654 | Shell.PressureDrop.fi=6.090*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.602; |
---|
655 | |
---|
656 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
657 | |
---|
658 | case "range4": |
---|
659 | |
---|
660 | "Ji Factor" |
---|
661 | Shell.HeatTransfer.Ji =0.107*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.266; |
---|
662 | |
---|
663 | "Shell Side Pressure Drop Friction Factor" |
---|
664 | Shell.PressureDrop.fi=0.0815*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^0.022; |
---|
665 | |
---|
666 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
667 | |
---|
668 | case "range5": |
---|
669 | |
---|
670 | "Ji Factor" |
---|
671 | Shell.HeatTransfer.Ji =0.370*((1.33*Dotube/pitch)^a)*Shell.HeatTransfer.Re^-0.395; |
---|
672 | |
---|
673 | "Shell Side Pressure Drop Friction Factor" |
---|
674 | Shell.PressureDrop.fi=0.391*((1.33*Dotube/pitch)^b)*Shell.HeatTransfer.Re^-0.148; |
---|
675 | |
---|
676 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
677 | |
---|
678 | end |
---|
679 | |
---|
680 | end |
---|
681 | |
---|
682 | switch ShellFlowRegime |
---|
683 | |
---|
684 | case "deep laminar": |
---|
685 | |
---|
686 | "Jr Factor" |
---|
687 | Shell.HeatTransfer.Jr = (10/((Nc +Ncw)*(Nb+1)))^0.18; |
---|
688 | |
---|
689 | "Js Factor" |
---|
690 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.7 + (Baffles.Lso/Baffles.Ls)^0.7)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
691 | |
---|
692 | "Jb Factor" |
---|
693 | Shell.HeatTransfer.Jb = exp(-1.35*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
694 | |
---|
695 | "ByPass Correction Factor for Pressure Drop" |
---|
696 | Rb = exp(-4.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
697 | |
---|
698 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
699 | Rspd = (Baffles.Ls/Baffles.Lso) + (Baffles.Ls/Baffles.Lsi); |
---|
700 | |
---|
701 | "Shell Pressure Drop Baffle Window" |
---|
702 | Shell.PressureDrop.Pdwindow = Nb*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(pitch-Dotube)+ Baffles.Ls/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
703 | |
---|
704 | when Shell.HeatTransfer.Re > 20 switchto "laminar"; |
---|
705 | |
---|
706 | case "laminar": |
---|
707 | |
---|
708 | "Jr Factor" |
---|
709 | Shell.HeatTransfer.Jr = (10/((Nc +Ncw)*(Nb+1)))^0.18 + (0.25-0.0125*Shell.HeatTransfer.Re)*((10/((Nc +Ncw)*(Nb+1)))^0.18 - 1); |
---|
710 | |
---|
711 | "Js Factor" |
---|
712 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.7 + (Baffles.Lso/Baffles.Ls)^0.7)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
713 | |
---|
714 | "Jb Factor" |
---|
715 | Shell.HeatTransfer.Jb = exp(-1.35*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
716 | |
---|
717 | "ByPass Correction Factor for Pressure Drop" |
---|
718 | Rb = exp(-4.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
719 | |
---|
720 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
721 | Rspd = (Baffles.Ls/Baffles.Lso) + (Baffles.Ls/Baffles.Lsi); |
---|
722 | |
---|
723 | "Shell Pressure Drop Baffle Window" |
---|
724 | Shell.PressureDrop.Pdwindow = Nb*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(pitch-Dotube)+ Baffles.Ls/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
725 | |
---|
726 | when Shell.HeatTransfer.Re < 20 switchto "deep laminar"; |
---|
727 | when Shell.HeatTransfer.Re > 100 switchto "turbulent"; |
---|
728 | |
---|
729 | case "turbulent": |
---|
730 | |
---|
731 | "Jr Factor" |
---|
732 | Shell.HeatTransfer.Jr = 1; |
---|
733 | |
---|
734 | "Js Factor" |
---|
735 | Shell.HeatTransfer.Js = (Nb-1+(Baffles.Lsi/Baffles.Ls)^0.4 + (Baffles.Lso/Baffles.Ls)^0.4)/(Nb-1+(Baffles.Lsi/Baffles.Ls) + (Baffles.Lso/Baffles.Ls)); |
---|
736 | |
---|
737 | "Jb Factor" |
---|
738 | Shell.HeatTransfer.Jb = exp(-1.25*( Lcf+ Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm*(1-(2*(Nss/Nc)^(1/3)))); |
---|
739 | |
---|
740 | "ByPass Correction Factor for Pressure Drop" |
---|
741 | Rb = exp(-3.7*((Lcf + Dotube)*Baffles.Ls/Shell.HeatTransfer.Sm)*(1-(2*Rss)^(1/3))); |
---|
742 | |
---|
743 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
744 | Rspd = (Baffles.Ls/Baffles.Lso)^1.8 + (Baffles.Ls/Baffles.Lsi)^1.8; |
---|
745 | |
---|
746 | "Shell Pressure Drop Baffle Window" |
---|
747 | Shell.PressureDrop.Pdwindow = Nb*((2+0.6*Ncw)*0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
748 | |
---|
749 | when Shell.HeatTransfer.Re < 100 switchto "laminar"; |
---|
750 | |
---|
751 | end |
---|
752 | |
---|
753 | "Shell Pressure Drop Cross Flow" |
---|
754 | Shell.PressureDrop.PdCross = Shell.PressureDrop.Pideal*Rb*(Nb-1)*exp(-1.33*(1+Rs)*((Scd + Std)/Shell.HeatTransfer.Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
755 | |
---|
756 | "Shell Side Phi correction" |
---|
757 | Shell.HeatTransfer.Phi = (Shell.Properties.Average.Mu/Shell.Properties.Wall.Mu)^0.14; |
---|
758 | |
---|
759 | "Tube Side Phi correction" |
---|
760 | Tubes.HeatTransfer.Phi = (Tubes.Properties.Average.Mu/Tubes.Properties.Wall.Mu)^0.14; |
---|
761 | |
---|
762 | "Shell Side inlet Nozzle rho-V^2" |
---|
763 | Shell.PressureDrop.RVsquare_in = Shell.Properties.Inlet.rho*(Shell.PressureDrop.Vnozzle_in)^2; |
---|
764 | |
---|
765 | "Shell Side Outlet Nozzle rho-V^2" |
---|
766 | Shell.PressureDrop.RVsquare_out = Shell.Properties.Outlet.rho*(Shell.PressureDrop.Vnozzle_out)^2; |
---|
767 | |
---|
768 | "Tube Side Pressure Drop" |
---|
769 | Tubes.PressureDrop.PdTube = 2*Tubes.PressureDrop.fi*Ltube*Tubes.Properties.Average.rho*(Tubes.HeatTransfer.Vtube^2)*Tpass/(Ditube*Tubes.HeatTransfer.Phi); |
---|
770 | |
---|
771 | "Pressure Drop Tube Side Inlet Nozzle" |
---|
772 | Tubes.PressureDrop.Pdnozzle_in = 0.5*Kinlet_Tube*Tubes.Properties.Inlet.rho*Tubes.PressureDrop.Vnozzle_in^2; |
---|
773 | |
---|
774 | "Velocity Tube Side Inlet Nozzle" |
---|
775 | Tubes.PressureDrop.Vnozzle_in = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Inlet.rho*Ainozzle_Tube); |
---|
776 | |
---|
777 | "Pressure Drop Tube Side Outlet Nozzle" |
---|
778 | Tubes.PressureDrop.Pdnozzle_out = 0.5*Koutlet_Tube*Tubes.Properties.Outlet.rho*Tubes.PressureDrop.Vnozzle_out^2; |
---|
779 | |
---|
780 | "Velocity Tube Side Outlet Nozzle" |
---|
781 | Tubes.PressureDrop.Vnozzle_out = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Outlet.rho*Aonozzle_Tube); |
---|
782 | |
---|
783 | "Shell Pressure Drop Inlet Nozzle" |
---|
784 | Shell.PressureDrop.Pdnozzle_in = (0.5*Shell.Properties.Inlet.Fw^2/Shell.Properties.Inlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
785 | |
---|
786 | "Velocity Shell Side Inlet Nozzle" |
---|
787 | Shell.PressureDrop.Vnozzle_in = Shell.Properties.Inlet.Fw/(Shell.Properties.Inlet.rho*Ainozzle_Shell); |
---|
788 | |
---|
789 | "Shell Pressure Drop Outlet Nozzle" |
---|
790 | Shell.PressureDrop.Pdnozzle_out = (0.5*Shell.Properties.Outlet.Fw^2/Shell.Properties.Outlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
791 | |
---|
792 | "Velocity Shell Side Outlet Nozzle" |
---|
793 | Shell.PressureDrop.Vnozzle_out = Shell.Properties.Outlet.Fw/(Shell.Properties.Outlet.rho*Aonozzle_Shell); |
---|
794 | |
---|
795 | "Pressure Drop Shell Stream" |
---|
796 | OutletShell.P = InletShell.P - Shell.PressureDrop.Pdtotal; |
---|
797 | |
---|
798 | "Pressure Drop Tube Stream" |
---|
799 | OutletTube.P = InletTube.P - Tubes.PressureDrop.Pdtotal; |
---|
800 | |
---|
801 | "Shell Wall Temperature" |
---|
802 | Shell.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
803 | |
---|
804 | "Tube Wall Temperature" |
---|
805 | Tubes.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
806 | |
---|
807 | "Tube Side Velocity" |
---|
808 | Tubes.HeatTransfer.Vtube = Tubes.Properties.Inlet.Fw*Tpass/((Pi*Ditube*Ditube/4)*Tubes.Properties.Average.rho*Ntt); |
---|
809 | |
---|
810 | "Tube Side Reynolds Number" |
---|
811 | Tubes.HeatTransfer.Re = (Tubes.Properties.Average.rho*Tubes.HeatTransfer.Vtube*Ditube)/Tubes.Properties.Average.Mu; |
---|
812 | |
---|
813 | "Tube Side Prandtl Number" |
---|
814 | Tubes.HeatTransfer.PR = ((Tubes.Properties.Average.Cp/Tubes.Properties.Average.Mw)*Tubes.Properties.Average.Mu)/Tubes.Properties.Average.K; |
---|
815 | |
---|
816 | "Tube Side Film Coefficient" |
---|
817 | Tubes.HeatTransfer.htube= (Tubes.HeatTransfer.Nu*Tubes.Properties.Average.K/Ditube)*Tubes.HeatTransfer.Phi; |
---|
818 | |
---|
819 | "Shell Side Prandtl Number" |
---|
820 | Shell.HeatTransfer.PR = ((Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*Shell.Properties.Average.Mu)/Shell.Properties.Average.K; |
---|
821 | |
---|
822 | "Overall Heat Transfer Coefficient Dirty" |
---|
823 | Details.Ud=1/(Dotube/(Tubes.HeatTransfer.htube*Ditube)+Rfo+Rfi*(Dotube/Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
824 | |
---|
825 | "Overall Heat Transfer Coefficient Clean" |
---|
826 | Details.Uc=1/(Dotube/(Tubes.HeatTransfer.htube*Ditube)+(Dotube*ln(Dotube/Ditube)/(2*Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
827 | |
---|
828 | "Exchange Surface Area" |
---|
829 | Details.A=Pi*Dotube*Ntt*Ltube; |
---|
830 | |
---|
831 | "Baffles Spacing" |
---|
832 | Ltube = Baffles.Lsi+Baffles.Lso+Baffles.Ls*(Nb-1); |
---|
833 | |
---|
834 | "Shell Side Reynolds Number" |
---|
835 | Shell.HeatTransfer.Re = (Dotube*Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)/Shell.Properties.Average.Mu; |
---|
836 | |
---|
837 | "Shell Heat Transfer Coefficient" |
---|
838 | Shell.HeatTransfer.hshell = Shell.HeatTransfer.Ji*(Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*(Shell.Properties.Inlet.Fw/Shell.HeatTransfer.Sm)*(Shell.HeatTransfer.PR^(-2/3))*Shell.HeatTransfer.Jtotal*Shell.HeatTransfer.Phi; |
---|
839 | |
---|
840 | end |
---|
841 | |
---|
842 | Model ShellandTubes_NTU as ShellandTubesBasic |
---|
843 | |
---|
844 | ATTRIBUTES |
---|
845 | Pallete = true; |
---|
846 | Icon = "icon/ShellandTubes_NTU"; |
---|
847 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
848 | Info = |
---|
849 | "to be documented"; |
---|
850 | |
---|
851 | VARIABLES |
---|
852 | |
---|
853 | Method as NTU_Basic (Brief="NTU Method"); |
---|
854 | |
---|
855 | EQUATIONS |
---|
856 | |
---|
857 | "Number of Units Transference" |
---|
858 | Method.NTU*Method.Cmin = Details.Ud*Pi*Dotube*Ntt*Ltube; |
---|
859 | |
---|
860 | "Minimum Heat Capacity" |
---|
861 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
862 | |
---|
863 | "Maximum Heat Capacity" |
---|
864 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
865 | |
---|
866 | "Thermal Capacity Ratio" |
---|
867 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
868 | |
---|
869 | switch HotSide |
---|
870 | |
---|
871 | case "shell": |
---|
872 | |
---|
873 | "Duty" |
---|
874 | Details.Q = Method.Eft*Method.Cmin*(InletShell.T-InletTube.T); |
---|
875 | |
---|
876 | "Hot Stream Heat Capacity" |
---|
877 | Method.Ch = InletShell.F*Shell.Properties.Average.Cp; |
---|
878 | |
---|
879 | "Cold Stream Heat Capacity" |
---|
880 | Method.Cc = InletTube.F*Tubes.Properties.Average.Cp; |
---|
881 | |
---|
882 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
883 | |
---|
884 | case "tubes": |
---|
885 | |
---|
886 | "Duty" |
---|
887 | Details.Q = Method.Eft*Method.Cmin*(InletTube.T-InletShell.T); |
---|
888 | |
---|
889 | "Hot Stream Heat Capacity" |
---|
890 | Method.Cc = InletShell.F*Shell.Properties.Average.Cp; |
---|
891 | |
---|
892 | "Cold Stream Heat Capacity" |
---|
893 | Method.Ch = InletTube.F*Tubes.Properties.Average.Cp; |
---|
894 | |
---|
895 | when InletTube.T < InletShell.T switchto "shell"; |
---|
896 | |
---|
897 | end |
---|
898 | |
---|
899 | switch ShellType |
---|
900 | |
---|
901 | case "Fshell": |
---|
902 | |
---|
903 | "Effectiveness Correction for 2 pass shell side" |
---|
904 | Method.Eft1 = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^-1; |
---|
905 | |
---|
906 | "TEMA F Shell Effectiveness" |
---|
907 | Method.Eft = ( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 -1 )*( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 - Method.Cr )^-1; |
---|
908 | |
---|
909 | case "Eshell": |
---|
910 | |
---|
911 | "TEMA E Shell Effectiveness" |
---|
912 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^-1; |
---|
913 | # Method.Eft = 1; |
---|
914 | |
---|
915 | "Variable not in use when 1 Pass Shell Side" |
---|
916 | Method.Eft1 = 1; |
---|
917 | |
---|
918 | end |
---|
919 | |
---|
920 | end |
---|
921 | |
---|
922 | Model ShellandTubes_LMTD as ShellandTubesBasic |
---|
923 | |
---|
924 | ATTRIBUTES |
---|
925 | Pallete = true; |
---|
926 | Icon = "icon/ShellandTubes_LMTD"; |
---|
927 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
928 | Info = |
---|
929 | "to be documented."; |
---|
930 | |
---|
931 | PARAMETERS |
---|
932 | |
---|
933 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakeri"],Default="Bowmann"); |
---|
934 | |
---|
935 | VARIABLES |
---|
936 | |
---|
937 | Method as LMTD_Basic; |
---|
938 | R as positive (Brief=" Capacity Ratio for LMTD Correction Fator",Lower=1e-6); |
---|
939 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6); |
---|
940 | Pc as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side",Lower=1e-6); |
---|
941 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
942 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
943 | lambdaN as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation when 2 Pass Shell Side",Lower=1e-6); |
---|
944 | lambda1 as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equationwhen 2 Pass Shell Side",Lower=1e-6); |
---|
945 | |
---|
946 | EQUATIONS |
---|
947 | |
---|
948 | "Exchange Surface Area" |
---|
949 | Details.Q = Details.Ud*Pi*Dotube*Ntt*Ltube*Method.LMTD*Method.Fc; |
---|
950 | |
---|
951 | switch HotSide |
---|
952 | |
---|
953 | case "shell": |
---|
954 | |
---|
955 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
956 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
957 | |
---|
958 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
959 | R*(OutletTube.T - InletTube.T ) = (InletShell.T-OutletShell.T); |
---|
960 | |
---|
961 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
962 | P*(InletShell.T- InletTube.T)= (OutletTube.T-InletTube.T); |
---|
963 | |
---|
964 | "Temperature Difference at Inlet" |
---|
965 | Method.DT0 = InletShell.T - OutletTube.T; |
---|
966 | |
---|
967 | "Temperature Difference at Outlet" |
---|
968 | Method.DTL = OutletShell.T - InletTube.T; |
---|
969 | |
---|
970 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
971 | |
---|
972 | case "tubes": |
---|
973 | |
---|
974 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
975 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
976 | |
---|
977 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
978 | R*(OutletShell.T - InletShell.T ) = (InletTube.T-OutletTube.T); |
---|
979 | |
---|
980 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
981 | P*(InletTube.T- InletShell.T)= (OutletShell.T-InletShell.T); |
---|
982 | |
---|
983 | "Temperature Difference at Inlet" |
---|
984 | Method.DT0 = InletTube.T - OutletShell.T; |
---|
985 | |
---|
986 | "Temperature Difference at Outlet" |
---|
987 | Method.DTL = OutletTube.T - InletShell.T; |
---|
988 | |
---|
989 | |
---|
990 | when InletTube.T < InletShell.T switchto "shell"; |
---|
991 | |
---|
992 | end |
---|
993 | |
---|
994 | switch ShellType |
---|
995 | |
---|
996 | case "Fshell": |
---|
997 | |
---|
998 | switch LMTDcorrection |
---|
999 | |
---|
1000 | case "Bowmann": |
---|
1001 | |
---|
1002 | " Variable not in use with Bowmann equation" |
---|
1003 | lambdaN =1; |
---|
1004 | |
---|
1005 | " Variable not in use with Bowmann equation" |
---|
1006 | lambda1 =1; |
---|
1007 | |
---|
1008 | #" Variable not in use with Bowmann equation" |
---|
1009 | # Phi = 1; |
---|
1010 | |
---|
1011 | " Variable not in use with Bowmann equation" |
---|
1012 | Rho =1; |
---|
1013 | |
---|
1014 | if R equal 1 |
---|
1015 | |
---|
1016 | then |
---|
1017 | |
---|
1018 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1019 | Pc*(2-P)= P; |
---|
1020 | |
---|
1021 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1022 | Method.Fc= (sqrt(2)*Pc)/((1-Pc)*ln( abs( ( 2-Pc*0.585786)/( 2-Pc*3.414214)))); |
---|
1023 | |
---|
1024 | else |
---|
1025 | |
---|
1026 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1027 | Pc = (sqrt(abs(( 1-P*R)/(1-P)))-1)/(sqrt(abs(( 1-P*R)/(1-P)))-R); |
---|
1028 | |
---|
1029 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1030 | Method.Fc = sqrt(R*R+1)*ln(abs((1-Pc*R)/(1-Pc)))/((1-R)*ln( abs( ( 2-Pc*(R+1-sqrt(R*R+1)))/ ( 2-Pc*(R + 1 + sqrt(R*R+1)))))); |
---|
1031 | |
---|
1032 | end |
---|
1033 | |
---|
1034 | case "Fakeri": |
---|
1035 | |
---|
1036 | " Variable not in use with Fakeri equation" |
---|
1037 | Pc = P; |
---|
1038 | |
---|
1039 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1040 | Rho*(1-P*R) = (1-P); |
---|
1041 | |
---|
1042 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1043 | # Phi = (sqrt(((Inlet.Hot.T - Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T + Outlet.Hot.T)-( Inlet.Cold.T + Outlet.Cold.T))); |
---|
1044 | |
---|
1045 | if Rho equal 1 |
---|
1046 | |
---|
1047 | then |
---|
1048 | |
---|
1049 | " Variable not in use when Rho = 1" |
---|
1050 | lambdaN = 1; |
---|
1051 | |
---|
1052 | " Variable not in use when Rho = 1" |
---|
1053 | lambda1 = 1; |
---|
1054 | |
---|
1055 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1056 | Method.Fc = (2*Phi )/(ln(abs((1+Phi )/(1-Phi )))); |
---|
1057 | |
---|
1058 | else |
---|
1059 | |
---|
1060 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1061 | lambdaN = (1/ln(sqrt(abs(Rho))))*((2*sqrt(abs(Rho))-2)/(sqrt(abs(Rho))+1)); |
---|
1062 | |
---|
1063 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1064 | lambda1 = (1/ln(abs(Rho)))*((2*Rho-2)/(Rho+1)); |
---|
1065 | |
---|
1066 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1067 | Method.Fc = ((2*Phi *(lambdaN/lambda1))/(ln(abs((1+Phi *(lambdaN/lambda1))/(1-Phi *(lambdaN/lambda1))))))*(1/lambdaN); |
---|
1068 | |
---|
1069 | end |
---|
1070 | |
---|
1071 | |
---|
1072 | end |
---|
1073 | |
---|
1074 | case "Eshell": |
---|
1075 | |
---|
1076 | " Variable not in use when 1 Pass Shell Side" |
---|
1077 | lambdaN =1; |
---|
1078 | |
---|
1079 | " Variable not in use when 1 Pass Shell Side" |
---|
1080 | lambda1 =1; |
---|
1081 | |
---|
1082 | " Variable not in use when 1 Pass Shell Side" |
---|
1083 | Pc = P; |
---|
1084 | |
---|
1085 | switch LMTDcorrection |
---|
1086 | |
---|
1087 | case "Bowmann": |
---|
1088 | |
---|
1089 | #" Variable not in use with Bowmann equation" |
---|
1090 | # Phi = 1; |
---|
1091 | |
---|
1092 | " Variable not in use with Bowmann equation" |
---|
1093 | Rho = 1; |
---|
1094 | |
---|
1095 | |
---|
1096 | if R equal 1 |
---|
1097 | |
---|
1098 | then |
---|
1099 | |
---|
1100 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1101 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
1102 | |
---|
1103 | else |
---|
1104 | |
---|
1105 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1106 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
1107 | |
---|
1108 | end |
---|
1109 | |
---|
1110 | case "Fakeri": |
---|
1111 | |
---|
1112 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1113 | # Phi = (sqrt(((Inlet.Hot.T- Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T+ Outlet.Hot.T)-(Inlet.Cold.T+ Outlet.Cold.T))); |
---|
1114 | |
---|
1115 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1116 | Rho*(1-P*R) = (1-P); |
---|
1117 | |
---|
1118 | if Rho equal 1 |
---|
1119 | |
---|
1120 | then |
---|
1121 | |
---|
1122 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1123 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
1124 | |
---|
1125 | else |
---|
1126 | |
---|
1127 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1128 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
1129 | |
---|
1130 | end |
---|
1131 | |
---|
1132 | end |
---|
1133 | |
---|
1134 | |
---|
1135 | end |
---|
1136 | |
---|
1137 | end |
---|
1138 | |
---|