[171] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *--------------------------------------------------------------------- |
---|
| 16 | * Hydrolysis of propylene glycol |
---|
| 17 | *---------------------------------------------------------------------- |
---|
| 18 | * Solved problem from Fogler (1999) |
---|
| 19 | * Problem number: 8-4 and 8-5 |
---|
| 20 | * Page: 404-410 (Brazilian edition, 2002) |
---|
| 21 | *---------------------------------------------------------------------- |
---|
| 22 | * |
---|
| 23 | * Description: |
---|
| 24 | * The propylene glycol is produced for hydrolysis reaction of |
---|
| 25 | * propylene oxide in a CSTR: |
---|
| 26 | * CH3(O)CHCH3 + H2O -> CH2(OH)CH2(OH)CH3 |
---|
| 27 | * This sample calculates the molar conversion that is reached |
---|
| 28 | * with this operation condition. In the example 8-4 is used an |
---|
| 29 | * adiabatic CSTR and in the example 8-5 is used a CSTR with a |
---|
| 30 | * cooling coil. |
---|
| 31 | * |
---|
| 32 | * Assumptions |
---|
| 33 | * * first-order reaction with respect to propylene oxide |
---|
| 34 | * * steady-state |
---|
| 35 | * * adiabatic system |
---|
| 36 | * * liquid phase |
---|
| 37 | * |
---|
| 38 | * Specify: |
---|
| 39 | * * the inlet stream |
---|
| 40 | * * the kinetic parameters |
---|
| 41 | * * the components parameters |
---|
| 42 | * |
---|
| 43 | *---------------------------------------------------------------------- |
---|
| 44 | * Author: Christiano D. W. Guerra and Rodolfo Rodrigues |
---|
| 45 | * $Id: propylene_glycol.mso 188 2007-03-07 16:53:12Z rodolfo $ |
---|
| 46 | *--------------------------------------------------------------------*# |
---|
| 47 | |
---|
| 48 | using "types"; |
---|
| 49 | |
---|
| 50 | |
---|
| 51 | #*--------------------------------------------------------------------- |
---|
| 52 | * Example 8-4: In an adiabatic CSTR |
---|
| 53 | *--------------------------------------------------------------------*# |
---|
| 54 | |
---|
| 55 | FlowSheet adiabatic_cstr |
---|
| 56 | PARAMETERS |
---|
| 57 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
| 58 | stoic(NComp)as Real (Brief="Stoichiometric coefficients"); |
---|
[188] | 59 | vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); |
---|
| 60 | Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); |
---|
| 61 | To as temperature (Brief="Initial temperature", DisplayUnit='degR'); |
---|
| 62 | Tr as temperature (Brief="Reference temperature", DisplayUnit='degR'); |
---|
[171] | 63 | Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); |
---|
[188] | 64 | Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); |
---|
[171] | 65 | V as volume (Brief="Volume of the reactor"); |
---|
| 66 | # Rate of reaction |
---|
| 67 | A as frequency (Brief="Frequency factor"); |
---|
| 68 | E as Real (Brief="Energy activation", Unit='Btu/lbmol'); |
---|
| 69 | R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); |
---|
| 70 | |
---|
| 71 | VARIABLES |
---|
[188] | 72 | T as temperature (Brief="Temperature", DisplayUnit='degR'); |
---|
[171] | 73 | k as Real (Brief="Specific rate of reaction", Unit='1/h'); |
---|
| 74 | XMB as fraction (Brief="Conversion as Material balance"); |
---|
| 75 | XEB as fraction (Brief="Conversion as Energy balance"); |
---|
[188] | 76 | tau as time_h (Brief="Residence time"); |
---|
[171] | 77 | Theta(NComp)as Real (Brief="Molar fraction between components"); |
---|
| 78 | |
---|
| 79 | EQUATIONS |
---|
| 80 | "Change time in T" |
---|
| 81 | T = time*'degR/s'; |
---|
| 82 | |
---|
| 83 | "Residence time" |
---|
| 84 | V = tau*sum(vo); |
---|
| 85 | |
---|
| 86 | "Parameter Theta" |
---|
| 87 | Theta = Fo/Fo(1); |
---|
| 88 | |
---|
| 89 | "Specific rate of reaction" |
---|
| 90 | k = A*exp(-E/R/T); |
---|
| 91 | |
---|
| 92 | "Conversion as Material balance" |
---|
| 93 | XMB*(1 + tau*k) = tau*k; |
---|
| 94 | |
---|
| 95 | "Conversion as Energy balance" |
---|
| 96 | XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -sumt(Theta*Cp)*(T - To); |
---|
| 97 | |
---|
| 98 | SET |
---|
| 99 | NComp = 4; # A: propylene oxide, B: water, |
---|
| 100 | # C: propylene glicol, and M: methanol |
---|
| 101 | stoic = [-1, -1, 1, 0]; # A + B -> C |
---|
| 102 | |
---|
| 103 | V = 300*'gal'; |
---|
| 104 | Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr |
---|
| 105 | Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; |
---|
| 106 | vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; |
---|
| 107 | |
---|
| 108 | Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; |
---|
| 109 | To = (75 + 459.69)*'degR'; |
---|
| 110 | Tr = (68 + 459.69)*'degR'; |
---|
| 111 | |
---|
| 112 | A = 16.96e12*'1/h'; |
---|
| 113 | E = 32400*'Btu/lbmol'; |
---|
| 114 | |
---|
| 115 | OPTIONS |
---|
[188] | 116 | TimeStart = 535; |
---|
| 117 | TimeStep = 0.45; |
---|
| 118 | TimeEnd = 625; |
---|
[171] | 119 | end |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | #*--------------------------------------------------------------------- |
---|
| 123 | * Example 8-5: In a CSTR with a cooling coil |
---|
| 124 | *--------------------------------------------------------------------*# |
---|
| 125 | |
---|
| 126 | FlowSheet cooling_cstr |
---|
| 127 | PARAMETERS |
---|
| 128 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
| 129 | stoic(NComp)as Real (Brief="Stoichiometric coefficients"); |
---|
[188] | 130 | vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); |
---|
| 131 | Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); |
---|
[171] | 132 | To as temperature (Brief="Initial temperature"); |
---|
| 133 | Tr as temperature (Brief="Reference temperature"); |
---|
| 134 | Ta as temperature (Brief="Temperature of cooling"); |
---|
| 135 | Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); |
---|
[188] | 136 | Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); |
---|
[171] | 137 | V as volume (Brief="Volume of the reactor"); |
---|
| 138 | U as heat_trans_coeff(Brief="Heat transfer coefficient"); |
---|
| 139 | a as area (Brief="Heat transfer area"); |
---|
| 140 | # Rate of reaction |
---|
| 141 | A as frequency (Brief="Frequency factor"); |
---|
| 142 | E as Real (Brief="Energy Activation", Unit='Btu/lbmol'); |
---|
| 143 | R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); |
---|
| 144 | |
---|
| 145 | VARIABLES |
---|
| 146 | XMB as fraction (Brief="Molar conversion as Material balance"); |
---|
| 147 | XEB as fraction (Brief="Molar conversion as Energy balance", Lower=-0.1, Upper=1.5); |
---|
| 148 | k as Real (Brief="Specific rate of reaction", Unit='1/h'); |
---|
[188] | 149 | T as temperature (Brief="Temperature", DisplayUnit='degR'); |
---|
| 150 | tau as time_h (Brief="Residence time"); |
---|
[171] | 151 | Theta(NComp)as Real (Brief="Molar fraction between components"); |
---|
| 152 | |
---|
| 153 | EQUATIONS |
---|
| 154 | "Change time in T" |
---|
| 155 | T = time*'degR/s'; |
---|
| 156 | |
---|
| 157 | "Specific rate of reaction" |
---|
| 158 | k = A*exp(-E/(R*T)); |
---|
| 159 | |
---|
| 160 | "Residence time" |
---|
| 161 | V = tau*sum(vo); |
---|
| 162 | |
---|
| 163 | "Parameter Theta" |
---|
| 164 | Theta = Fo/Fo(1); |
---|
| 165 | |
---|
| 166 | "Conversion as Material balance" |
---|
| 167 | XMB*(1 + tau*k) = tau*k; |
---|
| 168 | |
---|
| 169 | "Conversion as Energy balance" |
---|
| 170 | XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = |
---|
| 171 | -(sumt(Theta*Cp)*(T - To) + U*a*(T - Ta)/Fo(1)); |
---|
| 172 | |
---|
| 173 | SET |
---|
| 174 | NComp = 4; # A: propylene oxide, B: water, |
---|
| 175 | # C: propylene glicol, and M: methanol |
---|
| 176 | stoic = [-1, -1, 1, 0]; # A + B -> C |
---|
| 177 | |
---|
| 178 | V = 300*'gal'; |
---|
| 179 | U = 100*'Btu/ft^2/h/degR'; |
---|
| 180 | a = 40*'ft^2'; |
---|
| 181 | |
---|
| 182 | Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr |
---|
| 183 | Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; |
---|
| 184 | vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; |
---|
| 185 | Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; |
---|
| 186 | |
---|
| 187 | To = (75 + 459.69)*'degR'; |
---|
| 188 | Tr = (68 + 459.69)*'degR'; |
---|
| 189 | Ta = (85 + 459.69)*'degR'; |
---|
| 190 | |
---|
| 191 | A = 16.96e12*'1/h'; |
---|
| 192 | E = 32400*'Btu/lbmol'; |
---|
| 193 | |
---|
| 194 | OPTIONS |
---|
[188] | 195 | TimeStart = 535; |
---|
| 196 | TimeStep = 0.45; |
---|
| 197 | TimeEnd = 625; |
---|
[171] | 198 | end |
---|