source: branches/newlanguage/sample/reactors/fogler/chap4/spheric_reactor.mso @ 188

Last change on this file since 188 was 188, checked in by Rodolfo Rodrigues, 17 years ago

Updated reactor samples for the new language

  • Property svn:keywords set to Id
File size: 3.7 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*---------------------------------------------------------------------
16* Spheric reactor
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 4-8
20* Page: 151 (Brazilian version, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               Sample to calculate of the molar conversion and pressure drop
25*       as function of the length in a spheric reactor with a reaction of
26*       dehydrogenation (reforming reaction):
27*                       paraffin -> oleffin + H2
28*       of first-order with respect to paraffin.
29*       
30*   Assumptions:
31*               * change time in length
32*       * steady-state
33*       * isotermic system
34*       * gaseous phase
35*
36*       Specify:
37*               * the inlet stream
38*               * the kinetic parameters
39*               * the parameters of reactor
40*               * the parameters of catalyst packed bed
41*
42*----------------------------------------------------------------------
43* Author: Christiano D. W. Guerra and Rodolfo Rodrigues
44* $Id: spheric_reactor.mso 188 2007-03-07 16:53:12Z rodolfo $
45*--------------------------------------------------------------------*#
46
47using "types";
48
49
50FlowSheet spheric_reactor
51        PARAMETERS
52        rho_0 as dens_mass      (Brief="Initial density");
53        Dp    as length         (Brief="Particle diameter");
54        k_lin as Real           (Brief="Specific rate of reaction", Unit='m^3/kg/s');
55        visc  as viscosity      (Brief="Flow viscosity");
56        L     as length         (Brief="Fixed bed half length");
57        rho_c as dens_mass      (Brief="Catalyser density");
58        phi   as fraction       (Brief="Fixed bed porosity");
59        pi        as Real               (Brief="Number pi", Default=3.14159);
60        R     as length         (Brief="Radius reactor");
61       
62        VARIABLES
63        X     as fraction       (Brief="Molar conversion");
64        y     as Real           (Brief="Dimensionless pressure drop (P/P0)", Lower=0);
65        P     as pressure       (Brief="Output pressure", DisplayUnit='kPa');
66        z         as length             (Brief="Length of reactor");
67        beta0 as Real           (Brief="Parameter beta0 of Ergun equation", Unit='Pa/m');
68        Ac    as area           (Brief="Tranversal section area", Lower=0);
69        Ca0   as conc_mol       (Brief="Input molar concentration of A");
70        Fa0   as flow_mol       (Brief="Input molar flow of A");
71        P0    as pressure       (Brief="Initial pressure", DisplayUnit='kPa');
72        m         as flow_mass  (Brief="Mass flow");
73       
74        EQUATIONS
75        "Change time in z"
76        z = time*'m/s';
77       
78        "Transversal section area"
79        Ac = pi*(R^2 - (z - L)^2);
80       
81        "Parameter beta0 of Ergun equation"
82        beta0 = m*(1 - phi)/(rho_0*Ac*Dp*(phi^3))*(150*(1 - phi)*visc/Dp - 1.75*m/Ac);
83       
84       
85        "Molar conversion"
86        diff(X) = k_lin*(Ca0*(1 - X)/(1 + X)*y)*rho_c*(1 - phi)*Ac/Fa0*'m/s';
87       
88        "Pressure drop"
89        diff(y) = -beta0/P0/y*(1 + X)*'m/s';
90       
91        "Dimensionless pressure drop"
92        y = P/P0;
93       
94        SET
95        rho_0 = 32*'kg/m^3';
96        Dp        = 0.002*'m';
97        k_lin = 2e-5*'m^3/kg/s';
98        visc  = 1.5e-5*'kg/m/s';
99        L         = 2.7*'m';
100        rho_c = 2600*'kg/m^3';
101        phi   = 0.4;
102        R         = 3*'m';
103       
104        SPECIFY
105        "Input molar concentration of A"
106        Ca0 = 320*'mol/m^3';
107        "Input molar flow of A"
108        Fa0 = 440*'mol/s';
109        "Initial pressure"
110        P0      = 2000*'kPa';
111        "Input mass flow"
112        m       = 44*'kg/s';
113
114        INITIAL
115        "Molar conversion"
116        X = 0; 
117        "Dimensionless pressure drop"
118        y = 1;
119
120        OPTIONS
121        TimeStep = 0.1;
122        TimeEnd = 5.4;
123end
Note: See TracBrowser for help on using the repository browser.