source: branches/newlanguage/sample/reactors/fogler/chap4/spheric_reactor.mso @ 171

Last change on this file since 171 was 171, checked in by gerson bicca, 16 years ago

some modifications in the models for the new language (reactors model)

  • Property svn:keywords set to Id
File size: 3.8 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*---------------------------------------------------------------------
16* Spheric reactor
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 4-8
20* Page: 151 (Brazilian version, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               Sample to calculate of the molar conversion and pressure drop
25*       as function of the length in a spheric reactor with a reaction of
26*       dehydrogenation (reforming reaction):
27*                       paraffin -> oleffin + H2
28*       of first-order with respect to paraffin.
29*       
30*   Assumptions:
31*               * change time in length
32*       * steady-state
33*       * isotermic system
34*       * gaseous phase
35*
36*       Specify:
37*               * the inlet stream
38*               * the kinetic parameters
39*               * the parameters of reactor
40*               * the parameters of catalyst packed bed
41*
42*----------------------------------------------------------------------
43* Author: Christiano D. Wetzel Guerra and Rodolfo Rodrigues
44* GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, Control,
45*                                       and Optimization of Processes
46* $Id: spheric_reactor.mso 171 2007-03-02 13:06:53Z bicca $
47*--------------------------------------------------------------------*#
48
49using "types";
50
51
52FlowSheet spheric_reactor
53
54PARAMETERS
55        rho_0   as dens_mass    (Brief="Initial density");
56        Dp              as length               (Brief="Particle diameter");
57        k_lin           as Real                         (Brief="Specific rate of reaction", Unit='m^3/kg/s');
58        visc            as viscosity    (Brief="Flow viscosity");
59        L               as length               (Brief="Fixed bed half length");
60        rho_c   as dens_mass    (Brief="Catalyser density");
61        phi             as fraction             (Brief="Fixed bed porosity");
62        pi                      as Real                 (Brief="Number pi", Default=3.14159);
63        R               as length               (Brief="Radius reactor");
64       
65        VARIABLES
66        X     as fraction       (Brief="Molar conversion");
67        y     as Real           (Brief="Dimensionless pressure drop (P/P0)", Lower=0);
68        P     as pressure       (Brief="Output pressure", Unit='kPa');
69        z         as length             (Brief="Length of reactor");
70        beta0 as Real           (Brief="Parameter beta0 of Ergun equation", Unit='Pa/m');
71        Ac    as area           (Brief="Tranversal section area", Lower=0);
72        Ca0   as conc_mol       (Brief="Input molar concentration of A");
73        Fa0   as flow_mol       (Brief="Input molar flow of A");
74        P0    as pressure       (Brief="Initial pressure", Unit='kPa');
75        m         as flow_mass  (Brief="Mass flow");
76       
77        EQUATIONS
78        "Change time in z"
79        z = time*'m/s';
80       
81        "Transversal section area"
82        Ac = pi*(R^2 - (z - L)^2);
83       
84        "Parameter beta0 of Ergun equation"
85        beta0 = m*(1 - phi)/(rho_0*Ac*Dp*(phi^3))*(150*(1 - phi)*visc/Dp - 1.75*m/Ac);
86       
87       
88        "Molar conversion"
89        diff(X) = k_lin*(Ca0*(1 - X)/(1 + X)*y)*rho_c*(1 - phi)*Ac/Fa0*'m/s';
90       
91        "Pressure drop"
92        diff(y) = -beta0/P0/y*(1 + X)*'m/s';
93       
94        "Dimensionless pressure drop"
95        y = P/P0;
96       
97        SET
98        rho_0 = 32*'kg/m^3';
99        Dp        = 0.002*'m';
100        k_lin = 2e-5*'m^3/kg/s';
101        visc  = 1.5e-5*'kg/m/s';
102        L         = 2.7*'m';
103        rho_c = 2600*'kg/m^3';
104        phi   = 0.4;
105        R         = 3*'m';
106       
107        SPECIFY
108        "Input molar concentration of A"
109        Ca0 = 320*'mol/m^3';
110        "Input molar flow of A"
111        Fa0 = 440*'mol/s';
112        "Initial pressure"
113        P0      = 2000*'kPa';
114        "Input mass flow"
115        m       = 44*'kg/s';
116
117        INITIAL
118        "Molar conversion"
119        X = 0; 
120        "Dimensionless pressure drop"
121        y = 1;
122
123        OPTIONS
124        TimeStep =0.1;
125        TimeEnd =5.4;
126end
Note: See TracBrowser for help on using the repository browser.