1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *--------------------------------------------------------------------- |
---|
16 | * Spheric reactor |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * Solved problem from Fogler (1999) |
---|
19 | * Problem number: 4-8 |
---|
20 | * Page: 151 (Brazilian version, 2002) |
---|
21 | *---------------------------------------------------------------------- |
---|
22 | * |
---|
23 | * Description: |
---|
24 | * Sample to calculate of the molar conversion and pressure drop |
---|
25 | * as function of the length in a spheric reactor with a reaction of |
---|
26 | * dehydrogenation (reforming reaction): |
---|
27 | * paraffin -> oleffin + H2 |
---|
28 | * of first-order with respect to paraffin. |
---|
29 | * |
---|
30 | * Assumptions: |
---|
31 | * * change time in length |
---|
32 | * * steady-state |
---|
33 | * * isotermic system |
---|
34 | * * gaseous phase |
---|
35 | * |
---|
36 | * Specify: |
---|
37 | * * the inlet stream |
---|
38 | * * the kinetic parameters |
---|
39 | * * the parameters of reactor |
---|
40 | * * the parameters of catalyst packed bed |
---|
41 | * |
---|
42 | *---------------------------------------------------------------------- |
---|
43 | * Author: Christiano D. Wetzel Guerra and Rodolfo Rodrigues |
---|
44 | * GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, Control, |
---|
45 | * and Optimization of Processes |
---|
46 | * $Id: spheric_reactor.mso 82 2006-12-08 20:11:44Z paula $ |
---|
47 | *--------------------------------------------------------------------*# |
---|
48 | |
---|
49 | using "types"; |
---|
50 | |
---|
51 | |
---|
52 | FlowSheet spheric_reactor |
---|
53 | PARAMETERS |
---|
54 | rho_0 as dens_mass (Brief="Initial density"); |
---|
55 | Dp as length (Brief="Particle diameter"); |
---|
56 | k_lin as Real (Brief="Specific rate of reaction", Unit="m^3/kg/s"); |
---|
57 | visc as viscosity (Brief="Flow viscosity"); |
---|
58 | L as length (Brief="Fixed bed half length"); |
---|
59 | rho_c as dens_mass (Brief="Catalyser density"); |
---|
60 | phi as fraction (Brief="Fixed bed porosity"); |
---|
61 | pi as Real (Brief="Number pi", Default=3.14159); |
---|
62 | R as length (Brief="Radius reactor"); |
---|
63 | |
---|
64 | VARIABLES |
---|
65 | X as fraction (Brief="Molar conversion"); |
---|
66 | y as Real (Brief="Dimensionless pressure drop (P/P0)", Lower=0); |
---|
67 | P as pressure (Brief="Output pressure", Unit="kPa"); |
---|
68 | z as length (Brief="Length of reactor"); |
---|
69 | beta0 as Real (Brief="Parameter beta0 of Ergun equation", Unit="Pa/m"); |
---|
70 | Ac as area (Brief="Tranversal section area", Lower=0); |
---|
71 | Ca0 as conc_mol (Brief="Input molar concentration of A"); |
---|
72 | Fa0 as flow_mol (Brief="Input molar flow of A"); |
---|
73 | P0 as pressure (Brief="Initial pressure", Unit="kPa"); |
---|
74 | m as flow_mass (Brief="Mass flow"); |
---|
75 | |
---|
76 | EQUATIONS |
---|
77 | "Change time in z" |
---|
78 | z = time*"m/s"; |
---|
79 | |
---|
80 | "Transversal section area" |
---|
81 | Ac = pi*(R^2 - (z - L)^2); |
---|
82 | |
---|
83 | "Parameter beta0 of Ergun equation" |
---|
84 | beta0 = m*(1 - phi)/(rho_0*Ac*Dp*(phi^3))*(150*(1 - phi)*visc/Dp - 1.75*m/Ac); |
---|
85 | |
---|
86 | |
---|
87 | "Molar conversion" |
---|
88 | diff(X) = k_lin*(Ca0*(1 - X)/(1 + X)*y)*rho_c*(1 - phi)*Ac/Fa0*"m/s"; |
---|
89 | |
---|
90 | "Pressure drop" |
---|
91 | diff(y) = -beta0/P0/y*(1 + X)*"m/s"; |
---|
92 | |
---|
93 | "Dimensionless pressure drop" |
---|
94 | y = P/P0; |
---|
95 | |
---|
96 | SET |
---|
97 | rho_0 = 32*"kg/m^3"; |
---|
98 | Dp = 0.002*"m"; |
---|
99 | k_lin = 2e-5*"m^3/kg/s"; |
---|
100 | visc = 1.5e-5*"kg/m/s"; |
---|
101 | L = 2.7*"m"; |
---|
102 | rho_c = 2600*"kg/m^3"; |
---|
103 | phi = 0.4; |
---|
104 | R = 3*"m"; |
---|
105 | |
---|
106 | SPECIFY |
---|
107 | "Input molar concentration of A" |
---|
108 | Ca0 = 320*"mol/m^3"; |
---|
109 | "Input molar flow of A" |
---|
110 | Fa0 = 440*"mol/s"; |
---|
111 | "Initial pressure" |
---|
112 | P0 = 2000*"kPa"; |
---|
113 | "Input mass flow" |
---|
114 | m = 44*"kg/s"; |
---|
115 | |
---|
116 | INITIAL |
---|
117 | "Molar conversion" |
---|
118 | X = 0; |
---|
119 | "Dimensionless pressure drop" |
---|
120 | y = 1; |
---|
121 | |
---|
122 | OPTIONS |
---|
123 | time =[0:0.1:5.4]; |
---|
124 | end |
---|