source: branches/newlanguage/eml/stage_separators/tray.mso @ 124

Last change on this file since 124 was 124, checked in by Rafael de Pelegrini Soares, 15 years ago

Updated some models using if conditions

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 7.5 KB
RevLine 
[1]1#*-------------------------------------------------------------------
[72]2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*--------------------------------------------------------------------
[1]16* Model of a tray
[72]17*--------------------------------------------------------------------
18*    - Streams
19*       * a liquid outlet stream
20*       * a liquid inlet stream
21*       * a vapour outlet stream
22*       * a vapour inlet stream
23*       * a feed stream
[1]24*
25*       - Assumptions
26*               * both phases (liquid and vapour) exists all the time
27*               * thermodymanic equilibrium (Murphree plate efficiency=1)
28*               * no entrainment of liquid or vapour phase
29*               * no weeping
30*               * the dymanics in the downcomer are neglected
31*
32*       - Tray hydraulics: Roffel B.,Betlem B.H.L.,Ruijter J.A.F. (2000)
[72]33*                                               Computers and Chemical Engineering
34*                                          Frauke Reepmeyer, Jens-Uwe Repke and Günter Wozny (2003)
35*                                               Chem. Eng. Technol. 26 (2003) 1
[1]36*
[72]37*       - Specify:
[1]38*               * the Feed stream
39*               * the Liquid inlet stream
[72]40*               * the Vapour inlet stream
41*               * the Vapour outlet flow (OutletV.F)
[1]42*
[72]43*       - Initial:
[1]44*               * the plate temperature (OutletL.T)
[72]45*               * the liquid height (Level) or the liquid flow OutletL.F
46*               * (NoComps - 1) OutletL compositions
[1]47*
48*----------------------------------------------------------------------
49* Author: Paula B. Staudt
50* $Id: tray.mso 124 2007-01-19 17:54:55Z rafael $
51*--------------------------------------------------------------------*#
52
53using "streams";
54
55Model trayBasic
56
57        PARAMETERS
[124]58        outer PP as Plugin;
59        outer NComp as Integer;
[1]60        V as volume(Brief="Total Volume of the tray");
61        Q as heat_rate (Brief="Rate of heat supply");
62        Ap as area (Brief="Plate area = Atray - Adowncomer");
63       
64        VARIABLES
65in      Inlet as stream;
66in      InletL as stream;
67in      InletV as stream;
[124]68out     OutletL as liquid_stream;
69out     OutletV as vapour_stream;
[1]70
71        M(NComp) as mol (Brief="Molar Holdup in the tray");
72        ML as mol (Brief="Molar liquid holdup");
73        MV as mol (Brief="Molar vapour holdup");
74        E as energy (Brief="Total Energy Holdup on tray");
75        vL as volume_mol (Brief="Liquid Molar Volume");
76        vV as volume_mol (Brief="Vapour Molar volume");
77        Level as length (Brief="Height of clear liquid on plate");
78        yideal(NComp) as fraction;
79        Emv as Real (Brief = "Murphree efficiency");
80       
81        EQUATIONS
82        "Component Molar Balance"
83        diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z
84                - OutletL.F*OutletL.z - OutletV.F*OutletV.z;
85       
86        "Energy Balance"
87        diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h
88                - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q );
89       
90        "Molar Holdup"
91        M = ML*OutletL.z + MV*OutletV.z;
92       
93        "Energy Holdup"
94        E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V;
95       
96        "Mol fraction normalisation"
97        sum(OutletL.z)= 1.0;
98        sum(OutletL.z)= sum(OutletV.z);
99       
100        "Liquid Volume"
101        vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z);
102        "Vapour Volume"
103        vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z);
104       
105        "Chemical Equilibrium"
106        PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z =
[60]107                PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal;
[1]108
109        "Murphree Efficiency"
110        OutletV.z = Emv * (yideal - InletV.z) + InletV.z;
111       
112        "Thermal Equilibrium"
113        OutletV.T = OutletL.T;
114       
115        "Mechanical Equilibrium"
116        OutletV.P = OutletL.P;
117       
118        "Geometry Constraint"
119        V = ML* vL + MV*vV;
120       
121        "Level of clear liquid over the weir"
122        Level = ML*vL/Ap;
123end
124
125Model tray as trayBasic
126
127        PARAMETERS
128        Ah as area (Brief="Total holes area");
129        lw as length (Brief="Weir length");
130        g as acceleration (Default=9.81);
131        hw as length (Brief="Weir height");
132        beta as fraction (Brief="Aeration fraction");
133        alfa as fraction (Brief="Dry pressure drop coefficient");
134       
135        VARIABLES
136        rhoL as dens_mass;
137        rhoV as dens_mass;
138
139        EQUATIONS
140        "Liquid Density"
141        rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z);
142        "Vapour Density"
143        rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z);
144
[124]145        if Level > (beta * hw) then
[1]146                "Francis Equation"
[103]147                OutletL.F = 1.84*"m^0.5/s"*lw*((Level-(beta*hw))/(beta))^2/vL;
[1]148        else
149                "Low level"
150                OutletL.F = 0 * "mol/h";
151        end
152
153end
154
[38]155#*-------------------------------------------------------------------
156* Model of a tray with reaction
157*-------------------------------------------------------------------*#
158Model trayReact
159
160        PARAMETERS
[124]161        outer PP as Plugin;
162        outer NComp as Integer;
[38]163        V as volume(Brief="Total Volume of the tray");
164        Q as power (Brief="Rate of heat supply");
165        Ap as area (Brief="Plate area = Atray - Adowncomer");
166       
167        Ah as area (Brief="Total holes area");
168        lw as length (Brief="Weir length");
169        g as acceleration (Default=9.81);
170        hw as length (Brief="Weir height");
171        beta as fraction (Brief="Aeration fraction");
172        alfa as fraction (Brief="Dry pressure drop coefficient");
173
174        stoic(NComp) as Real(Brief="Stoichiometric matrix");
175        Hr as energy_mol;
176        Pstartup as pressure;
177       
178        VARIABLES
179in      Inlet as stream;
180in      InletL as stream;
181in      InletV as stream;
[124]182out     OutletL as liquid_stream;
183out     OutletV as vapour_stream;
[38]184
185        yideal(NComp) as fraction;
186        Emv as Real (Brief = "Murphree efficiency");
187
188        M(NComp) as mol (Brief="Molar Holdup in the tray");
189        ML as mol (Brief="Molar liquid holdup");
190        MV as mol (Brief="Molar vapour holdup");
191        E as energy (Brief="Total Energy Holdup on tray");
192        vL as volume_mol (Brief="Liquid Molar Volume");
193        vV as volume_mol (Brief="Vapour Molar volume");
194        Level as length (Brief="Height of clear liquid on plate");
195        Vol as volume;
196       
197        rhoL as dens_mass;
198        rhoV as dens_mass;
199        r as reaction_mol (Brief = "Reaction rate", Unit = "mol/l/s");
200        C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); #, Unit = "mol/l");
201       
202        EQUATIONS
203        "Molar Concentration"
204        OutletL.z = vL * C;
205       
206        "Component Molar Balance"
207        diff(M)=Inlet.F*Inlet.z + InletL.F*InletL.z + InletV.F*InletV.z
208                - OutletL.F*OutletL.z - OutletV.F*OutletV.z + stoic*r*ML*vL;
209       
210        "Energy Balance"
211        diff(E) = ( Inlet.F*Inlet.h + InletL.F*InletL.h + InletV.F*InletV.h
212                - OutletL.F*OutletL.h - OutletV.F*OutletV.h + Q ) + Hr * r * vL*ML;
213       
214        "Molar Holdup"
215        M = ML*OutletL.z + MV*OutletV.z;
216       
217        "Energy Holdup"
218        E = ML*OutletL.h + MV*OutletV.h - OutletL.P*V;
219       
220        "Mol fraction normalisation"
221        sum(OutletL.z)= 1.0;
222       
223        "Liquid Volume"
224        vL = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z);
225        "Vapour Volume"
226        vV = PP.VapourVolume(OutletV.T, OutletV.P, OutletV.z);
227
228        "Thermal Equilibrium"
229        OutletV.T = OutletL.T;
230       
231        "Mechanical Equilibrium"
232        OutletV.P = OutletL.P;
233       
234        "vaporization fraction "
235        OutletV.v = 1.0;
236        OutletL.v = 0.0;
237       
238        "Level of clear liquid over the weir"
239        Level = ML*vL/Ap;
240
241        Vol = ML*vL;
242       
243        "Liquid Density"
244        rhoL = PP.LiquidDensity(OutletL.T, OutletL.P, OutletL.z);
245        "Vapour Density"
246        rhoV = PP.VapourDensity(InletV.T, InletV.P, InletV.z);
247
[124]248        if Level > (beta * hw) then
[38]249                "Francis Equation"
[72]250                OutletL.F = (1.84*"1/s"*lw*((Level-(beta*hw))/(beta))^2/vL);
[38]251        else
252                "Low level"
253                OutletL.F = 0 * "mol/h";
254        end
255
256               
257        "Pressure Drop through the tray"
258        OutletV.F = (1 + tanh(1 * (OutletV.P - Pstartup)/"Pa"))/2 *
259                Ah/vV * sqrt(2*(OutletV.P - InletL.P + 1e-8 * "atm") / (alfa*rhoV) );
260       
261
262        "Chemical Equilibrium"
263        PP.LiquidFugacityCoefficient(OutletL.T, OutletL.P, OutletL.z)*OutletL.z =
[60]264                PP.VapourFugacityCoefficient(OutletV.T, OutletV.P, yideal)*yideal;
[38]265       
266        OutletV.z = Emv * (yideal - InletV.z) + InletV.z;
267       
268        sum(OutletL.z)= sum(OutletV.z);
269       
270        "Geometry Constraint"
271        V = ML* vL + MV*vV;
272end
Note: See TracBrowser for help on using the repository browser.