[897] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *-------------------------------------------------------------------- |
---|
| 16 | * Models to simulate a power plant. |
---|
| 17 | *-------------------------------------------------------------------- |
---|
| 18 | * Author: Argimiro R. Secchi |
---|
| 19 | * $Id: power_plant.mso 195 2007-03-07 20:30:12Z arge $ |
---|
| 20 | *-------------------------------------------------------------------*# |
---|
| 21 | |
---|
| 22 | # Declaracao de tipos |
---|
| 23 | CalorEspecifico as Real(Default=1e-3,Lower=0,Upper=1,Unit='MJ/kg/K'); |
---|
| 24 | CoefGlobal_area as Real(Default=10,Lower=0,Upper=1e3,Unit='1000*kW/K'); |
---|
| 25 | Dif_Pres as Real(Default=0,Lower=-50,Upper=50,Unit='MPa'); |
---|
| 26 | Dif_Temp as Real(Default=0,Lower=-300,Upper=300,Unit='K'); |
---|
| 27 | Eficiencia as Real(Default=0.75,Lower=0,Upper=1); |
---|
| 28 | EnergiaInterna as Real(Default=2,Lower=0,Upper=10,Unit='MJ/kg'); |
---|
| 29 | Entalpia as Real(Default=3,Lower=1e-3,Upper=7,Unit='MJ/kg'); |
---|
| 30 | Entropia as Real(Default=5,Lower=1e-3,Upper=8,Unit='kJ/kg/K'); |
---|
| 31 | Fracao as Real(Default=0.5,Lower=0,Upper=1); |
---|
| 32 | Potencia as Real(Default=10,Lower=0,Upper=500,Unit='1000*kW'); |
---|
| 33 | Pressao as Real(Default=1,Lower=5e-4,Upper=20,Unit='MPa'); |
---|
| 34 | MassaEspecifica as Real(Default=1e3,Lower=1e-3,Upper=1e6,Unit='kg/m^3'); |
---|
| 35 | NoType as Real(Default=1,Lower=-2,Upper=2); |
---|
| 36 | Temperatura as Real(Default=600,Lower=273.16,Upper=900,Unit='K'); |
---|
| 37 | VazaoMassica as Real(Default=50,Lower=0,Upper=1e4,Unit='kg/s'); |
---|
| 38 | VolumeEspecifico as Real(Default=1e-3,Lower=1e-6,Upper=500,Unit='m^3/kg'); |
---|
| 39 | |
---|
| 40 | Model Corrente |
---|
| 41 | #Brief="Corrente para conexão entre os equipamentos" |
---|
| 42 | VARIABLES |
---|
| 43 | F as VazaoMassica; |
---|
| 44 | P as Pressao; |
---|
| 45 | T as Temperatura; |
---|
| 46 | S as Entropia; |
---|
| 47 | H as Entalpia; |
---|
| 48 | end |
---|
| 49 | |
---|
| 50 | # Modelo de turbina sem sangria |
---|
| 51 | Model Turbina |
---|
| 52 | PARAMETERS |
---|
| 53 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 54 | |
---|
| 55 | VARIABLES |
---|
| 56 | H_IS as Entalpia; |
---|
| 57 | EF_T as Eficiencia (Brief="Eficiencia da turbina"); |
---|
| 58 | POT_TURB as Potencia (Brief="Potencia da turbina"); |
---|
| 59 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 60 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 61 | |
---|
| 62 | EQUATIONS |
---|
| 63 | |
---|
| 64 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
| 65 | |
---|
| 66 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
| 67 | |
---|
| 68 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
| 69 | |
---|
| 70 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
| 71 | |
---|
| 72 | Fout.F = Fin.F; |
---|
| 73 | end |
---|
| 74 | |
---|
| 75 | # Modelo de turbina com sangria |
---|
| 76 | Model Turbina_sangra |
---|
| 77 | PARAMETERS |
---|
| 78 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 79 | |
---|
| 80 | VARIABLES |
---|
| 81 | H_IS as Entalpia; |
---|
| 82 | EF_T as Eficiencia(Brief="Eficiencia da turbina"); |
---|
| 83 | POT_TURB as Potencia(Brief="Potencia da turbina"); |
---|
| 84 | y as Fracao(Brief="Fracao massica da sangria"); |
---|
| 85 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 86 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 87 | out Fouts as Corrente (Symbol="_{outx}");#(Brief="Sangria da Turbina") |
---|
| 88 | |
---|
| 89 | EQUATIONS |
---|
| 90 | |
---|
| 91 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
| 92 | |
---|
| 93 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
| 94 | |
---|
| 95 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
| 96 | |
---|
| 97 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
| 98 | |
---|
| 99 | Fouts.F = Fin.F * y; |
---|
| 100 | Fout.F = Fin.F - Fouts.F; |
---|
| 101 | Fouts.P = Fout.P; |
---|
| 102 | Fouts.T = Fout.T; |
---|
| 103 | Fouts.S = Fout.S; |
---|
| 104 | Fouts.H = Fout.H; |
---|
| 105 | end |
---|
| 106 | |
---|
| 107 | # Modelo de condensador com uma alimentacao |
---|
| 108 | Model Condensador |
---|
| 109 | PARAMETERS |
---|
| 110 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 111 | |
---|
| 112 | VARIABLES |
---|
| 113 | Q_COND as Potencia (Brief="Taxa de calor removido"); |
---|
| 114 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
| 115 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 116 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 117 | |
---|
| 118 | EQUATIONS |
---|
| 119 | |
---|
| 120 | Fout.P = Fin.P; |
---|
| 121 | Fout.T = propterm.Tsat(Fout.P) - G_S; |
---|
| 122 | |
---|
| 123 | [Fout.S,Fout.H] = propterm.propPTl(Fout.P,Fout.T); |
---|
| 124 | |
---|
| 125 | Q_COND = Fin.F * (Fin.H - Fout.H); |
---|
| 126 | Fout.F = Fin.F; |
---|
| 127 | end |
---|
| 128 | |
---|
| 129 | # Modelo de condensador com duas alimentacoes |
---|
| 130 | Model Condensador_2alim |
---|
| 131 | PARAMETERS |
---|
| 132 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 133 | |
---|
| 134 | VARIABLES |
---|
| 135 | Q_COND as Potencia (Brief="Taxa de calor removido"); |
---|
| 136 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
| 137 | in Fin1 as Corrente (Brief="Corrente com pressao igual a saida", Symbol="_{in1}"); |
---|
| 138 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
| 139 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 140 | |
---|
| 141 | EQUATIONS |
---|
| 142 | |
---|
| 143 | Fout.P = Fin1.P; |
---|
| 144 | Fout.T = propterm.Tsat(Fout.P) - G_S; |
---|
| 145 | |
---|
| 146 | [Fout.S,Fout.H] = propterm.propPTl(Fout.P,Fout.T); |
---|
| 147 | |
---|
| 148 | Fout.F = Fin1.F + Fin2.F; |
---|
| 149 | Q_COND = Fin1.F * Fin1.H + Fin2.F * Fin2.H - Fout.F * Fout.H; |
---|
| 150 | end |
---|
| 151 | |
---|
| 152 | # Modelo de tanque de armazenamento com tres alimentacoes |
---|
| 153 | Model Tanque |
---|
| 154 | PARAMETERS |
---|
| 155 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 156 | |
---|
| 157 | VARIABLES |
---|
| 158 | in Fin1 as Corrente (Symbol="_{in1}"); |
---|
| 159 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
| 160 | in Fin3 as Corrente (Symbol="_{in3}"); |
---|
| 161 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 162 | |
---|
| 163 | EQUATIONS |
---|
| 164 | |
---|
| 165 | Fout.F = Fin1.F + Fin2.F + Fin3.F; |
---|
| 166 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H; |
---|
| 167 | |
---|
| 168 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
| 169 | end |
---|
| 170 | |
---|
| 171 | # Modelo de trocador de calor, dada a carga termica |
---|
| 172 | Model Trocador |
---|
| 173 | PARAMETERS |
---|
| 174 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 175 | |
---|
| 176 | VARIABLES |
---|
| 177 | Q as Potencia; |
---|
| 178 | DP as Dif_Pres; |
---|
| 179 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 180 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 181 | |
---|
| 182 | EQUATIONS |
---|
| 183 | |
---|
| 184 | Fout.F = Fin.F; |
---|
| 185 | Fout.P = Fin.P - DP; |
---|
| 186 | Fout.F * (Fout.H - Fin.H) = Q; |
---|
| 187 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
| 188 | end |
---|
| 189 | |
---|
| 190 | # Modelo de torre de refrigeracao |
---|
| 191 | Model Torre |
---|
| 192 | PARAMETERS |
---|
| 193 | cpa as CalorEspecifico; |
---|
| 194 | |
---|
| 195 | VARIABLES |
---|
| 196 | F as VazaoMassica; |
---|
| 197 | Q as Potencia; |
---|
| 198 | DTh as Dif_Temp; |
---|
| 199 | DTc as Dif_Temp; |
---|
| 200 | DTar as Dif_Temp; # grau de aquecimento do ar |
---|
| 201 | Th as Temperatura; |
---|
| 202 | Tc as Temperatura; |
---|
| 203 | Tar_c as Temperatura; |
---|
| 204 | Tar_h as Temperatura; |
---|
| 205 | Uat as CoefGlobal_area; |
---|
| 206 | |
---|
| 207 | EQUATIONS |
---|
| 208 | |
---|
| 209 | DTar = Tar_h - Tar_c; |
---|
| 210 | DTh = Th - Tar_h; |
---|
| 211 | DTc = Tc - Tar_c; |
---|
| 212 | F * cpa * (Th - Tc) = Q; |
---|
| 213 | Uat * (DTh - DTc) = Q * ln(abs(DTh/DTc)); |
---|
| 214 | # Uat * 0.5 * (DTh + DTc) = Q; |
---|
| 215 | end |
---|
| 216 | |
---|
| 217 | # Modelo de bomba |
---|
| 218 | Model Bomba |
---|
| 219 | PARAMETERS |
---|
| 220 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 221 | v_esp as VolumeEspecifico; |
---|
| 222 | |
---|
| 223 | VARIABLES |
---|
| 224 | H_IS as Entalpia; |
---|
| 225 | POT_BMB as Potencia(Brief="Potencia do motor da bomba"); |
---|
| 226 | POT_EF as Potencia(Brief="Potencia injetada pela bomba"); |
---|
| 227 | EF_B as Eficiencia(Brief="Eficiencia da bomba"); |
---|
| 228 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 229 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 230 | |
---|
| 231 | EQUATIONS |
---|
| 232 | |
---|
| 233 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
| 234 | |
---|
| 235 | (Fout.H - Fin.H) * EF_B = H_IS - Fin.H; |
---|
| 236 | # (Fout.H - Fin.H) * Fin.F = POT_EF; # Forma alternativa |
---|
| 237 | |
---|
| 238 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
| 239 | |
---|
| 240 | POT_EF = POT_BMB * EF_B; |
---|
| 241 | POT_EF = Fin.F * v_esp * (Fout.P - Fin.P); |
---|
| 242 | Fout.F = Fin.F; |
---|
| 243 | end |
---|
| 244 | |
---|
| 245 | # Modelo de gerador de vapor |
---|
| 246 | Model Gerador_Vapor |
---|
| 247 | PARAMETERS |
---|
| 248 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 249 | |
---|
| 250 | VARIABLES |
---|
| 251 | Q_GV as Potencia (Brief="Taxa de calor gerado na caldeira"); |
---|
| 252 | EF_GV as Eficiencia (Brief="Eficiencia do gerador de vapor"); |
---|
| 253 | Qra as Potencia (Brief="Taxa de calor nos reaquecedores"); |
---|
| 254 | Qsa as Potencia (Brief="Taxa de calor nos superaquecedores"); |
---|
| 255 | Qca as Potencia (Brief="Taxa de calor no evaporador"); |
---|
| 256 | Qec as Potencia (Brief="Taxa de calor nos economizadores"); |
---|
| 257 | in Fin_a as Corrente (Brief="Agua de alimentacao", Symbol="_{in_a}"); |
---|
| 258 | in Fin_ra as Corrente (Brief="Vapor a ser Reaquecido", Symbol="_{in_ra}"); |
---|
| 259 | out Fout_sa as Corrente (Brief="Vapor Superaquecido", Symbol="_{out_sa}"); |
---|
| 260 | out Fout_ra as Corrente (Brief="Vapor Reaquecido", Symbol="_{out_ra}"); |
---|
| 261 | Fvap as Corrente (Brief="Evaporador"); |
---|
| 262 | Feco as Corrente (Brief="Economizadores"); |
---|
| 263 | |
---|
| 264 | EQUATIONS |
---|
| 265 | |
---|
| 266 | # [Fin_a.S,Fin_a.H] = propterm.propPTl(Fin_a.P,Fin_a.T); # Reduntante no ciclo fechado |
---|
| 267 | |
---|
| 268 | "Economizadores ECO1 + ECO1" |
---|
| 269 | # Feco.F = Fin_a.F; # Reduntante no ciclo fechado |
---|
| 270 | [Feco.S,Feco.H] = propterm.propPTv(Feco.P,Feco.T); |
---|
| 271 | Qec = Feco.F * (Feco.H - Fin_a.H); |
---|
| 272 | |
---|
| 273 | "Evaporador - Camisa dagua" |
---|
| 274 | Fvap.F = Feco.F; |
---|
| 275 | [Fvap.S,Fvap.H] = propterm.propPTv(Fvap.P,Fvap.T); |
---|
| 276 | Qca = Fvap.F * (Fvap.H - Feco.H); |
---|
| 277 | |
---|
| 278 | "Superaquecedores BT + AT" |
---|
| 279 | Fout_sa.F = Fvap.F; |
---|
| 280 | [Fout_sa.S,Fout_sa.H] = propterm.propPTv(Fout_sa.P,Fout_sa.T); |
---|
| 281 | Qsa = Fout_sa.F * (Fout_sa.H - Fvap.H); |
---|
| 282 | |
---|
| 283 | "Reaquecedores BT + AT" |
---|
| 284 | Fout_ra.F = Fin_ra.F; |
---|
| 285 | [Fout_ra.S,Fout_ra.H] = propterm.propPTv(Fout_ra.P,Fout_ra.T); |
---|
| 286 | Qra = Fout_ra.F * (Fout_ra.H - Fin_ra.H); |
---|
| 287 | |
---|
| 288 | "Caldeira" |
---|
| 289 | Q_GV * EF_GV = Qec + Qca + Qsa + Qra; |
---|
| 290 | end |
---|
| 291 | |
---|
| 292 | # Modelo simplificado gerador de vapor |
---|
| 293 | Model Gerador_Vapor_Simples |
---|
| 294 | PARAMETERS |
---|
| 295 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
| 296 | |
---|
| 297 | VARIABLES |
---|
| 298 | Q_GV as Potencia; |
---|
| 299 | EF_GV as Eficiencia; |
---|
| 300 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 301 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 302 | |
---|
| 303 | EQUATIONS |
---|
| 304 | |
---|
| 305 | Fout.P = Fin.P; |
---|
| 306 | |
---|
| 307 | [Fout.S,Fout.H] = propterm.propPTv(Fout.P,Fout.T); |
---|
| 308 | |
---|
| 309 | Q_GV * EF_GV = Fin.F * (Fout.H - Fin.H); |
---|
| 310 | # Fout.F = Fin.F; |
---|
| 311 | end |
---|
| 312 | |
---|
| 313 | # Modelo de gerador eletrico |
---|
| 314 | Model Gerador_Eletrico |
---|
| 315 | PARAMETERS |
---|
| 316 | EF_GE as Eficiencia(Brief="Eficiencia do gerador eletrico"); |
---|
| 317 | |
---|
| 318 | VARIABLES |
---|
| 319 | POT_GE as Potencia(Brief="Potencia do gerador eletrico"); |
---|
| 320 | end |
---|
| 321 | |
---|
| 322 | # Modelo de separador de corrente |
---|
| 323 | Model Splitter |
---|
| 324 | VARIABLES |
---|
| 325 | y as Fracao(Brief="Fracao de massa para a segunda corrente"); |
---|
| 326 | in Fin as Corrente (Symbol="_{in}"); |
---|
| 327 | out Fout as Corrente (Symbol="_{out}"); |
---|
| 328 | out Fouts as Corrente(Brief="Segunda corrente", Symbol="_{outx}"); |
---|
| 329 | |
---|
| 330 | EQUATIONS |
---|
| 331 | |
---|
| 332 | Fout.P = Fin.P; |
---|
| 333 | Fout.T = Fin.T; |
---|
| 334 | Fout.S = Fin.S; |
---|
| 335 | Fout.H = Fin.H; |
---|
| 336 | |
---|
| 337 | Fouts.P = Fin.P; |
---|
| 338 | Fouts.T = Fin.T; |
---|
| 339 | Fouts.S = Fin.S; |
---|
| 340 | Fouts.H = Fin.H; |
---|
| 341 | |
---|
| 342 | Fouts.F = Fin.F * y; |
---|
| 343 | Fout.F = Fin.F - Fouts.F; |
---|
| 344 | end |
---|