source: branches/new_gui/my_folders/fogler/chap8/propylene_glycol.mso @ 896

Last change on this file since 896 was 896, checked in by gerson bicca, 13 years ago

added special folder for unconventional applications

File size: 6.7 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*---------------------------------------------------------------------
16* Hydrolysis of propylene glycol
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 8-4 and 8-5
20* Page: 404-410 (Brazilian edition, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               The propylene glycol is produced for hydrolysis reaction of
25*       propylene oxide in a CSTR:
26*                       CH3(O)CHCH3 + H2O -> CH2(OH)CH2(OH)CH3
27*               This sample calculates the molar conversion that is reached
28*       with this operation condition. In the example 8-4 is used an
29*       adiabatic CSTR and in the example 8-5 is used a CSTR with a
30*       cooling coil.
31*
32*   Assumptions
33*               * first-order reaction with respect to propylene oxide
34*               * steady-state
35*       * adiabatic system
36*       * liquid phase
37*
38*       Specify:
39*               * the inlet stream
40*               * the kinetic parameters
41*               * the components parameters
42*
43*----------------------------------------------------------------------
44* Author: Christiano D. W. Guerra and Rodolfo Rodrigues
45* $Id: propylene_glycol.mso 202 2007-03-14 04:17:25Z arge $
46*--------------------------------------------------------------------*#
47
48using "types";
49
50
51#*---------------------------------------------------------------------
52* Example 8-4: In an adiabatic CSTR
53*--------------------------------------------------------------------*#
54
55FlowSheet adiabatic_cstr
56        PARAMETERS
57        NComp           as Integer              (Brief="Number of components", Lower=1);
58        stoic(NComp)as Real             (Brief="Stoichiometric coefficients");
59        vo(NComp)       as flow_vol     (Brief="Total input flow", DisplayUnit='ft^3/h');
60        Hro(NComp)      as enth_mol     (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol');
61        To                      as temperature  (Brief="Initial temperature", DisplayUnit='degR');
62        Tr                      as temperature  (Brief="Reference temperature", DisplayUnit='degR');
63        Cp(NComp)       as Real                 (Brief="Molar heat capacity", Unit='Btu/lbmol/degR');
64        Fo(NComp)       as flow_mol             (Brief="Input molar flow of component", DisplayUnit='lbmol/h');
65        V                       as volume               (Brief="Volume of the reactor");
66        # Rate of reaction
67        A                       as frequency    (Brief="Frequency factor");
68        E                       as Real                 (Brief="Energy activation", Unit='Btu/lbmol');
69        R                       as Real                 (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987);
70
71        VARIABLES
72        T                       as temperature  (Brief="Temperature", DisplayUnit='degR');
73        k                       as Real                 (Brief="Specific rate of reaction", Unit='1/h');
74        XMB                     as fraction             (Brief="Conversion as Material balance");
75        XEB                     as fraction             (Brief="Conversion as Energy balance");
76        tau                     as time_h               (Brief="Residence time");
77        Theta(NComp)as Real                     (Brief="Molar fraction between components");
78       
79        EQUATIONS
80        "Change time in T"
81        T = time*'degR/s';
82       
83        "Residence time"
84        V = tau*sum(vo);
85       
86        "Parameter Theta"
87        Theta = Fo/Fo(1);
88       
89        "Specific rate of reaction"
90        k = A*exp(-E/R/T);
91       
92        "Conversion as Material balance"
93        XMB*(1 + tau*k) = tau*k;
94       
95        "Conversion as Energy balance"
96        XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -sumt(Theta*Cp)*(T - To);
97       
98        SET
99        NComp = 4;      #       A: propylene oxide, B: water,
100                                #       C: propylene glicol, and M: methanol
101        stoic = [-1, -1, 1, 0]; # A + B -> C
102       
103        V       = 300*'gal';
104        Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr
105        Cp  = [35, 18, 46, 19.5]*'Btu/lbmol/degR';
106        vo  = [46.62, 233.1, 0, 46.62]*'ft^3/h';
107       
108        Fo      = [43.04, 802.8, 0, 71.87]*'lbmol/h';
109        To      = (75 + 459.69)*'degR';
110        Tr      = (68 + 459.69)*'degR';
111       
112        A       = 16.96e12*'1/h';
113        E       = 32400*'Btu/lbmol';
114       
115        OPTIONS
116        TimeStart = 535;
117        TimeStep = 0.45;
118        TimeEnd = 625;
119end
120
121
122#*---------------------------------------------------------------------
123* Example 8-5: In a CSTR with a cooling coil
124*--------------------------------------------------------------------*#
125
126FlowSheet cooling_cstr
127        PARAMETERS
128        NComp           as Integer              (Brief="Number of components", Lower=1);
129        stoic(NComp)as Real             (Brief="Stoichiometric coefficients");
130        vo(NComp)       as flow_vol     (Brief="Total input flow", DisplayUnit='ft^3/h');
131        Hro(NComp)      as enth_mol     (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol');
132        To                      as temperature  (Brief="Initial temperature");
133        Tr                      as temperature  (Brief="Reference temperature");
134        Ta                      as temperature  (Brief="Temperature of cooling");
135        Cp(NComp)       as Real                 (Brief="Molar heat capacity", Unit='Btu/lbmol/degR');
136        Fo(NComp)       as flow_mol             (Brief="Input molar flow of component", DisplayUnit='lbmol/h');
137        V                       as volume               (Brief="Volume of the reactor");
138        U                       as heat_trans_coeff(Brief="Heat transfer coefficient");
139        a                       as area                 (Brief="Heat transfer area");
140        # Rate of reaction
141        A                       as frequency    (Brief="Frequency factor");
142        E                       as Real                 (Brief="Energy Activation", Unit='Btu/lbmol');
143        R                       as Real                 (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987);
144
145        VARIABLES
146        XMB                     as fraction             (Brief="Molar conversion as Material balance");
147        XEB                     as Real                 (Brief="Molar conversion as Energy balance", Lower=-0.1, Upper=1.5);
148        k                       as Real                 (Brief="Specific rate of reaction", Unit='1/h');
149        T                       as temperature  (Brief="Temperature", DisplayUnit='degR');
150        tau                     as time_h               (Brief="Residence time");
151        Theta(NComp)as Real                     (Brief="Molar fraction between components");
152       
153        EQUATIONS
154        "Change time in T"
155        T = time*'degR/s';
156       
157        "Specific rate of reaction"
158        k = A*exp(-E/(R*T));
159       
160        "Residence time"
161        V = tau*sum(vo);
162       
163        "Parameter Theta"
164        Theta = Fo/Fo(1);
165       
166        "Conversion as Material balance"
167        XMB*(1 + tau*k) = tau*k;
168       
169        "Conversion as Energy balance"
170        XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) =
171                -(sumt(Theta*Cp)*(T - To) + U*a*(T - Ta)/Fo(1));
172
173        SET
174        NComp = 4;      #       A: propylene oxide, B: water,
175                                #       C: propylene glicol, and M: methanol
176        stoic = [-1, -1, 1, 0]; # A + B -> C
177       
178        V       = 300*'gal';
179        U       = 100*'Btu/ft^2/h/degR';
180        a       = 40*'ft^2';
181       
182        Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr
183        Cp  = [35, 18, 46, 19.5]*'Btu/lbmol/degR';
184        vo  = [46.62, 233.1, 0, 46.62]*'ft^3/h';
185        Fo      = [43.04, 802.8, 0, 71.87]*'lbmol/h';
186       
187        To      = (75 + 459.69)*'degR';
188        Tr      = (68 + 459.69)*'degR';
189        Ta      = (85 + 459.69)*'degR';
190       
191        A       = 16.96e12*'1/h';
192        E       = 32400*'Btu/lbmol';
193       
194        OPTIONS
195        TimeStart = 535;
196        TimeStep = 0.45;
197        TimeEnd = 625;
198end
Note: See TracBrowser for help on using the repository browser.