1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *--------------------------------------------------------------------- |
---|
16 | * Hydrolysis of propylene glycol |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * Solved problem from Fogler (1999) |
---|
19 | * Problem number: 8-4 and 8-5 |
---|
20 | * Page: 404-410 (Brazilian edition, 2002) |
---|
21 | *---------------------------------------------------------------------- |
---|
22 | * |
---|
23 | * Description: |
---|
24 | * The propylene glycol is produced for hydrolysis reaction of |
---|
25 | * propylene oxide in a CSTR: |
---|
26 | * CH3(O)CHCH3 + H2O -> CH2(OH)CH2(OH)CH3 |
---|
27 | * This sample calculates the molar conversion that is reached |
---|
28 | * with this operation condition. In the example 8-4 is used an |
---|
29 | * adiabatic CSTR and in the example 8-5 is used a CSTR with a |
---|
30 | * cooling coil. |
---|
31 | * |
---|
32 | * Assumptions |
---|
33 | * * first-order reaction with respect to propylene oxide |
---|
34 | * * steady-state |
---|
35 | * * adiabatic system |
---|
36 | * * liquid phase |
---|
37 | * |
---|
38 | * Specify: |
---|
39 | * * the inlet stream |
---|
40 | * * the kinetic parameters |
---|
41 | * * the components parameters |
---|
42 | * |
---|
43 | *---------------------------------------------------------------------- |
---|
44 | * Author: Christiano D. W. Guerra and Rodolfo Rodrigues |
---|
45 | * $Id: propylene_glycol.mso 202 2007-03-14 04:17:25Z arge $ |
---|
46 | *--------------------------------------------------------------------*# |
---|
47 | |
---|
48 | using "types"; |
---|
49 | |
---|
50 | |
---|
51 | #*--------------------------------------------------------------------- |
---|
52 | * Example 8-4: In an adiabatic CSTR |
---|
53 | *--------------------------------------------------------------------*# |
---|
54 | |
---|
55 | FlowSheet adiabatic_cstr |
---|
56 | PARAMETERS |
---|
57 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
58 | stoic(NComp)as Real (Brief="Stoichiometric coefficients"); |
---|
59 | vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); |
---|
60 | Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); |
---|
61 | To as temperature (Brief="Initial temperature", DisplayUnit='degR'); |
---|
62 | Tr as temperature (Brief="Reference temperature", DisplayUnit='degR'); |
---|
63 | Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); |
---|
64 | Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); |
---|
65 | V as volume (Brief="Volume of the reactor"); |
---|
66 | # Rate of reaction |
---|
67 | A as frequency (Brief="Frequency factor"); |
---|
68 | E as Real (Brief="Energy activation", Unit='Btu/lbmol'); |
---|
69 | R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); |
---|
70 | |
---|
71 | VARIABLES |
---|
72 | T as temperature (Brief="Temperature", DisplayUnit='degR'); |
---|
73 | k as Real (Brief="Specific rate of reaction", Unit='1/h'); |
---|
74 | XMB as fraction (Brief="Conversion as Material balance"); |
---|
75 | XEB as fraction (Brief="Conversion as Energy balance"); |
---|
76 | tau as time_h (Brief="Residence time"); |
---|
77 | Theta(NComp)as Real (Brief="Molar fraction between components"); |
---|
78 | |
---|
79 | EQUATIONS |
---|
80 | "Change time in T" |
---|
81 | T = time*'degR/s'; |
---|
82 | |
---|
83 | "Residence time" |
---|
84 | V = tau*sum(vo); |
---|
85 | |
---|
86 | "Parameter Theta" |
---|
87 | Theta = Fo/Fo(1); |
---|
88 | |
---|
89 | "Specific rate of reaction" |
---|
90 | k = A*exp(-E/R/T); |
---|
91 | |
---|
92 | "Conversion as Material balance" |
---|
93 | XMB*(1 + tau*k) = tau*k; |
---|
94 | |
---|
95 | "Conversion as Energy balance" |
---|
96 | XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = -sumt(Theta*Cp)*(T - To); |
---|
97 | |
---|
98 | SET |
---|
99 | NComp = 4; # A: propylene oxide, B: water, |
---|
100 | # C: propylene glicol, and M: methanol |
---|
101 | stoic = [-1, -1, 1, 0]; # A + B -> C |
---|
102 | |
---|
103 | V = 300*'gal'; |
---|
104 | Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr |
---|
105 | Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; |
---|
106 | vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; |
---|
107 | |
---|
108 | Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; |
---|
109 | To = (75 + 459.69)*'degR'; |
---|
110 | Tr = (68 + 459.69)*'degR'; |
---|
111 | |
---|
112 | A = 16.96e12*'1/h'; |
---|
113 | E = 32400*'Btu/lbmol'; |
---|
114 | |
---|
115 | OPTIONS |
---|
116 | TimeStart = 535; |
---|
117 | TimeStep = 0.45; |
---|
118 | TimeEnd = 625; |
---|
119 | end |
---|
120 | |
---|
121 | |
---|
122 | #*--------------------------------------------------------------------- |
---|
123 | * Example 8-5: In a CSTR with a cooling coil |
---|
124 | *--------------------------------------------------------------------*# |
---|
125 | |
---|
126 | FlowSheet cooling_cstr |
---|
127 | PARAMETERS |
---|
128 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
129 | stoic(NComp)as Real (Brief="Stoichiometric coefficients"); |
---|
130 | vo(NComp) as flow_vol (Brief="Total input flow", DisplayUnit='ft^3/h'); |
---|
131 | Hro(NComp) as enth_mol (Brief="Enthalpy of formation", DisplayUnit='Btu/lbmol'); |
---|
132 | To as temperature (Brief="Initial temperature"); |
---|
133 | Tr as temperature (Brief="Reference temperature"); |
---|
134 | Ta as temperature (Brief="Temperature of cooling"); |
---|
135 | Cp(NComp) as Real (Brief="Molar heat capacity", Unit='Btu/lbmol/degR'); |
---|
136 | Fo(NComp) as flow_mol (Brief="Input molar flow of component", DisplayUnit='lbmol/h'); |
---|
137 | V as volume (Brief="Volume of the reactor"); |
---|
138 | U as heat_trans_coeff(Brief="Heat transfer coefficient"); |
---|
139 | a as area (Brief="Heat transfer area"); |
---|
140 | # Rate of reaction |
---|
141 | A as frequency (Brief="Frequency factor"); |
---|
142 | E as Real (Brief="Energy Activation", Unit='Btu/lbmol'); |
---|
143 | R as Real (Brief="Universal gas constant", Unit='Btu/lbmol/degR', Default=1.987); |
---|
144 | |
---|
145 | VARIABLES |
---|
146 | XMB as fraction (Brief="Molar conversion as Material balance"); |
---|
147 | XEB as Real (Brief="Molar conversion as Energy balance", Lower=-0.1, Upper=1.5); |
---|
148 | k as Real (Brief="Specific rate of reaction", Unit='1/h'); |
---|
149 | T as temperature (Brief="Temperature", DisplayUnit='degR'); |
---|
150 | tau as time_h (Brief="Residence time"); |
---|
151 | Theta(NComp)as Real (Brief="Molar fraction between components"); |
---|
152 | |
---|
153 | EQUATIONS |
---|
154 | "Change time in T" |
---|
155 | T = time*'degR/s'; |
---|
156 | |
---|
157 | "Specific rate of reaction" |
---|
158 | k = A*exp(-E/(R*T)); |
---|
159 | |
---|
160 | "Residence time" |
---|
161 | V = tau*sum(vo); |
---|
162 | |
---|
163 | "Parameter Theta" |
---|
164 | Theta = Fo/Fo(1); |
---|
165 | |
---|
166 | "Conversion as Material balance" |
---|
167 | XMB*(1 + tau*k) = tau*k; |
---|
168 | |
---|
169 | "Conversion as Energy balance" |
---|
170 | XEB*(sumt(stoic*Hro) + sumt(stoic*Cp)*(T - Tr)) = |
---|
171 | -(sumt(Theta*Cp)*(T - To) + U*a*(T - Ta)/Fo(1)); |
---|
172 | |
---|
173 | SET |
---|
174 | NComp = 4; # A: propylene oxide, B: water, |
---|
175 | # C: propylene glicol, and M: methanol |
---|
176 | stoic = [-1, -1, 1, 0]; # A + B -> C |
---|
177 | |
---|
178 | V = 300*'gal'; |
---|
179 | U = 100*'Btu/ft^2/h/degR'; |
---|
180 | a = 40*'ft^2'; |
---|
181 | |
---|
182 | Hro = [-6.66e4, -1.23e5, -2.26e5, 0]*'Btu/lbmol'; # at Tr |
---|
183 | Cp = [35, 18, 46, 19.5]*'Btu/lbmol/degR'; |
---|
184 | vo = [46.62, 233.1, 0, 46.62]*'ft^3/h'; |
---|
185 | Fo = [43.04, 802.8, 0, 71.87]*'lbmol/h'; |
---|
186 | |
---|
187 | To = (75 + 459.69)*'degR'; |
---|
188 | Tr = (68 + 459.69)*'degR'; |
---|
189 | Ta = (85 + 459.69)*'degR'; |
---|
190 | |
---|
191 | A = 16.96e12*'1/h'; |
---|
192 | E = 32400*'Btu/lbmol'; |
---|
193 | |
---|
194 | OPTIONS |
---|
195 | TimeStart = 535; |
---|
196 | TimeStep = 0.45; |
---|
197 | TimeEnd = 625; |
---|
198 | end |
---|