1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *--------------------------------------------------------------------- |
---|
16 | * Production of acetic anhydride |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * Solved problem from Fogler (1999) |
---|
19 | * Problem number: 8-7 |
---|
20 | * Page: 421 (Brazilian version, 2002) |
---|
21 | *---------------------------------------------------------------------- |
---|
22 | * |
---|
23 | * Description: |
---|
24 | * The acetic anhydride is produced for thermal craking of the |
---|
25 | * acetone in a PFR: |
---|
26 | * CH3COCH3 -> CH2CO + CH4 |
---|
27 | * This sample calculates the molar conversion and temperature |
---|
28 | * as function of the length in the tubular reactor. In the case I |
---|
29 | * the operation is adiabatic and in the case II the reactor is |
---|
30 | * jacketed. |
---|
31 | * |
---|
32 | * Assumptions |
---|
33 | * * first-order reaction with respect to acetone |
---|
34 | * * steady-state |
---|
35 | * * gaseous phase |
---|
36 | * |
---|
37 | * Specify: |
---|
38 | * * the inlet stream |
---|
39 | * * the kinetic parameters |
---|
40 | * * the parameters of components |
---|
41 | * |
---|
42 | *---------------------------------------------------------------------- |
---|
43 | * Author: Christiano D. W. Guerra and Rodolfo Rodrigues |
---|
44 | * $Id: acetic_anhydride.mso 574 2008-07-25 14:18:50Z rafael $ |
---|
45 | *--------------------------------------------------------------------*# |
---|
46 | |
---|
47 | using "types"; |
---|
48 | |
---|
49 | |
---|
50 | #*--------------------------------------------------------------------- |
---|
51 | * Model of the thermal craking of acetone |
---|
52 | *--------------------------------------------------------------------*# |
---|
53 | |
---|
54 | Model thermal_cracking |
---|
55 | PARAMETERS |
---|
56 | NComp as Integer (Brief="Number of components", Lower=1); |
---|
57 | stoic(NComp)as Real (Brief="Stoichiometric number"); |
---|
58 | Pao as pressure (Brief="Input pressure of A"); |
---|
59 | Tr as temperature (Brief="Reference temperature"); |
---|
60 | To as temperature (Brief="Inlet temperature"); |
---|
61 | Ta as temperature (Brief="Internal temperature"); |
---|
62 | Hr(NComp) as enth_mol (Brief="Enthalpy of component"); |
---|
63 | R as Real (Brief="Universal gas constant", Unit='kPa*m^3/kmol/K', Default=8.314); |
---|
64 | U as Real (Brief="Heat transfer coefficient", Unit='J/m^2/K/s'); |
---|
65 | a as Real (Brief="Heat transfer area per volume of tube", Unit='1/m'); |
---|
66 | alpha(NComp)as cp_mol (Brief="Alpha term of Cp expression"); |
---|
67 | beta(NComp) as Real (Brief="Beta term of Cp expression", Unit='J/mol/K^2'); |
---|
68 | gamma(NComp)as Real (Brief="Gamma term of Cp expression", Unit='J/mol/K^3'); |
---|
69 | |
---|
70 | VARIABLES |
---|
71 | Ca as conc_mol (Brief="Molar concentration of A", DisplayUnit='kmol/m^3'); |
---|
72 | Cao as conc_mol (Brief="Inlet molar concentration of A", DisplayUnit='mol/m^3'); |
---|
73 | Fao as flow_mol (Brief="Inlet molar flow of A"); |
---|
74 | vo as flow_vol (Brief="Volumetric flow", DisplayUnit='m^3/s'); |
---|
75 | r as reaction_mol (Brief="Rate of reaction", DisplayUnit='kmol/m^3/s'); |
---|
76 | k as Real (Brief="Specific rate of reaction", Unit='1/s'); |
---|
77 | T as temperature (Brief="Temperature of reactor"); |
---|
78 | X as fraction (Brief="Molar conversion"); |
---|
79 | V as volume (Brief="Volume"); |
---|
80 | eps as Real (Brief="Parameter epsilon"); |
---|
81 | Cp(NComp) as cp_mol (Brief="Molar heat capacity", DisplayUnit='J/mol/K'); |
---|
82 | DHr as enth_mol (Brief="Enthalpy of reaction", DisplayUnit='kJ/mol'); |
---|
83 | |
---|
84 | EQUATIONS |
---|
85 | "Change time in V" |
---|
86 | V = time*'m^3/s'; |
---|
87 | |
---|
88 | "Molar balance" |
---|
89 | diff(X) = (-r)/Fao*'m^3/s'; |
---|
90 | |
---|
91 | "Rate of reaction" |
---|
92 | r = -k*Ca; |
---|
93 | |
---|
94 | "Specific rate of reaction" |
---|
95 | k = exp(34.34)*exp(-34222*'K'/T)*'1/s'; |
---|
96 | |
---|
97 | "Concentration of component A" |
---|
98 | Ca = Cao*(1 - X)/(1 + eps*X)*To/T; |
---|
99 | |
---|
100 | "Parameter epsilon" |
---|
101 | eps = sum(stoic); # yAo = 1 |
---|
102 | |
---|
103 | "Inlet molar concentration of A" |
---|
104 | Cao = Pao/(R*To); |
---|
105 | |
---|
106 | "Volumetric flow" |
---|
107 | Fao = Cao*vo; |
---|
108 | |
---|
109 | "Energy balance" |
---|
110 | diff(T)*(Fao*(Cp(1) + X*sumt(stoic*Cp))) = (U*a*(Ta - T) + (-r)*(-DHr))*'m^3/s'; |
---|
111 | |
---|
112 | "Enthalpy of reaction" |
---|
113 | DHr = sumt(stoic*Hr) + sumt(stoic*alpha)*(T - Tr) + sumt(stoic*beta)/2*(T^2 - Tr^2) |
---|
114 | + sumt(stoic*gamma)/3*(T^3 - Tr^3); |
---|
115 | |
---|
116 | "Molar heat capacity" |
---|
117 | Cp = alpha + beta*T + gamma*T^2; |
---|
118 | end |
---|
119 | |
---|
120 | |
---|
121 | #*--------------------------------------------------------------------- |
---|
122 | * Case I: In an adiabatic PFR |
---|
123 | *--------------------------------------------------------------------*# |
---|
124 | |
---|
125 | FlowSheet adiabatic_reactor |
---|
126 | DEVICES |
---|
127 | R as thermal_cracking; |
---|
128 | |
---|
129 | SET |
---|
130 | R.NComp = 3; # A: acetone, B: ketene and C: methane |
---|
131 | R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C |
---|
132 | |
---|
133 | R.Pao = 162*'kPa'; |
---|
134 | |
---|
135 | R.alpha = [26.63, 20.04, 13.39]*'J/mol/K'; |
---|
136 | R.beta = [0.183, 0.0945, 0.077]*'J/mol/K^2'; |
---|
137 | R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*'J/mol/K^3'; |
---|
138 | |
---|
139 | R.Hr = [-216.67, -61.09, -74.81]*'kJ/mol'; |
---|
140 | R.Tr = 298*'K'; |
---|
141 | R.To = 1035*'K'; |
---|
142 | R.Ta = 1150*'K'; |
---|
143 | R.U = 0.0*'J/m^2/K/s'; |
---|
144 | R.a = 150*'1/m'; |
---|
145 | |
---|
146 | SPECIFY |
---|
147 | R.Fao = (8000/58)*'kmol/h'; |
---|
148 | |
---|
149 | INITIAL |
---|
150 | "Molar conversion" |
---|
151 | R.X = 0.0; |
---|
152 | "Temperature" |
---|
153 | R.T = 1035*'K'; |
---|
154 | |
---|
155 | OPTIONS |
---|
156 | TimeStep = 0.05; |
---|
157 | TimeEnd = 5; |
---|
158 | TimeUnit = 's'; |
---|
159 | end |
---|
160 | |
---|
161 | |
---|
162 | #*--------------------------------------------------------------------- |
---|
163 | * Case II: In an jacketed PFR |
---|
164 | *--------------------------------------------------------------------*# |
---|
165 | |
---|
166 | FlowSheet jacketed_reactor |
---|
167 | DEVICES |
---|
168 | R as thermal_cracking; |
---|
169 | |
---|
170 | SET |
---|
171 | R.NComp = 3; # A: acetone, B: ketene and C: methane |
---|
172 | R.stoic = [-1.0, 1.0, 1.0]; # A -> B + C |
---|
173 | |
---|
174 | R.Pao = 162*'kPa'; |
---|
175 | |
---|
176 | R.alpha = [26.63, 20.04, 13.39]*'J/mol/K'; |
---|
177 | R.beta = [0.183, 0.0945, 0.077]*'J/mol/K^2'; |
---|
178 | R.gamma = [-45.86e-6, -30.95e-6, -18.71e-6]*'J/mol/K^3'; |
---|
179 | |
---|
180 | R.Hr = [-216.67, -61.09, -74.81]*'kJ/mol'; |
---|
181 | R.Tr = 298*'K'; |
---|
182 | R.To = 1035*'K'; |
---|
183 | R.Ta = 1150*'K'; |
---|
184 | R.U = 110*'J/m^2/K/s'; |
---|
185 | R.a = 150*'1/m'; |
---|
186 | |
---|
187 | SPECIFY |
---|
188 | R.Fao = (18.8*2e-3)*'mol/s'; |
---|
189 | |
---|
190 | INITIAL |
---|
191 | "Molar conversion" |
---|
192 | R.X = 0.0; |
---|
193 | "Temperature" |
---|
194 | R.T = 1035*'K'; |
---|
195 | |
---|
196 | OPTIONS |
---|
197 | TimeStep = 1e-5; |
---|
198 | TimeEnd = 1e-3; |
---|
199 | TimeUnit = 's'; |
---|
200 | end |
---|