source: branches/new_gui/my_folders/fogler/chap6/ammonia_oxidation.mso @ 896

Last change on this file since 896 was 896, checked in by gerson bicca, 13 years ago

added special folder for unconventional applications

File size: 4.0 KB
Line 
1#*--------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*----------------------------------------------------------------------
16* Ammonia oxidation in a PFR
17*----------------------------------------------------------------------
18* Solved problem from Fogler (1999)
19* Problem number: 6-8
20* Page: 279 (Brazilian edition, 2002)
21*----------------------------------------------------------------------
22*
23*   Description:
24*               In a PFR is occuring this simultaneous reaction catalyzed by
25*       metal oxide in gas phase:
26*                       1: 4NH3 + 5O2 -> 4NO + 6H2O
27*                       2: 2NH3 + 1.5O2 -> N2 + 3H2O
28*                       3: 2NO + O2  -> 2NO2
29*                       4: 4NH3 + 6NO -> 5N2 + 6H2O
30*               The rates of reaction to one specific component are known.
31*               They are: r1A, r2A, r3B and r4C.
32*               The concentration are calculed as function of position in the
33*       reactor.
34*
35*   Assumptions:
36*               * change time in reactor volume
37*       * steady-state
38*       * isotermic and isobaric system
39*       * gaseous phase
40*
41*       Specify:
42*               * the inlet stream
43*               * the kinetic parameters
44*
45*----------------------------------------------------------------------
46* Author: Christiano D. W. Guerra and Rodolfo Rodrigues
47* $Id$
48*--------------------------------------------------------------------*#
49
50using "types";
51
52
53#*---------------------------------------------------------------------
54* Example 6-8: in a PFR
55*--------------------------------------------------------------------*#
56
57FlowSheet pfr
58        PARAMETERS
59        NComp           as Integer              (Brief="Number of components");
60        NReac           as Integer              (Brief="Number of reactions");
61        stoic(NComp,NReac) as Real      (Brief="Stoichiometric coefficients");
62        k(NReac)        as Real                 (Brief="Specific velocity reaction");
63        Co(NComp)       as conc_mol     (Brief="Input molar concentration");
64        vo                      as flow_vol     (Brief="Input volumetric flow");
65       
66        VARIABLES
67        F(NComp)        as flow_mol     (Brief="Molar flow", DisplayUnit='mol/min');
68        Fo(NComp)       as flow_mol     (Brief="Input molar flow", DisplayUnit='mol/min');
69        C(NComp)        as conc_mol     (Brief="Molar concentration", DisplayUnit='mol/l');
70        r(NComp,NReac)as reaction_mol(Brief="Relative rate of reaction", DisplayUnit='mol/min/l');
71        rate(NComp) as reaction_mol     (Brief="Overall rate of reaction", DisplayUnit='mol/min/l');
72        V                       as volume               (Brief="Reactor volume", DisplayUnit='l');
73       
74        EQUATIONS
75        "Change time in V"
76        V = time*'l/s';
77       
78        "Material balance"
79        diff(F) = rate*'l/s';
80       
81        "Molar concentration"
82        C*sum(F) = F*sum(Co);
83       
84        "Input molar flow"
85        Fo = Co*vo;
86       
87        "Relative rate of reaction 1"
88        r(:,1) = stoic(:,1)*(k(1)*C(1)*C(2)^2)*'(m^3/kmol)^2/min';
89       
90        "Relative rate of reaction 2"
91        r(:,2) = stoic(:,2)*(k(2)*C(1)*C(2))*'m^3/kmol/min';
92       
93        "Relative rate of reaction 3"
94        r(:,3) = stoic(:,3)*(k(3)*C(2)*C(3)^2)*'(m^3/kmol)^2/min';
95       
96        "Relative rate of reaction 4"
97        r(:,4) = stoic(:,4)*(k(4)*C(3)*C(1)^(2/3))*'(m^3/kmol)^(2/3)/min';
98       
99        "Overall rate of reaction"
100        rate = sumt(r);
101
102        SET
103        NComp = 6;      # 1:ammonia, 2:oxygen, 3:nitrogen oxide,
104                                # 4:water, 5:nitrogen and 6:nitrogen dioxide
105       
106        NReac = 4;      # 1: 4A + 5B -> 4C + 6D,        2: 4A + 3B -> 2E + 6D
107                                # 3: 2C + B -> 2F,                      4: 4A + 6C -> 5E + 6D
108
109        stoic(:,1) = [  -1, -5/4,  1.0, 3/2, 0.0, 0.0]; # A  + 5/4B -> C + 3/2D
110        stoic(:,2) = [  -1, -3/4,  0.0, 3/2, 1/2, 0.0]; # A  + 3/4B -> 1/2E + 3/2D
111        stoic(:,3) = [   0, -1.0, -2.0, 0.0, 0.0, 2.0]; # B  +   2C -> 2F
112        stoic(:,4) = [-2/3,  0.0, -1.0, 1.0, 5/6, 0.0]; # C  + 2/3A -> 5/6E + D
113       
114        k = [5, 2, 10, 5];
115       
116        vo = 10*'l/min';
117        Co = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]*'mol/l';
118       
119        INITIAL
120        "Molar flow"
121        F = Fo;
122
123        OPTIONS
124        TimeStep = 0.1;
125        TimeEnd = 10;
126end
Note: See TracBrowser for help on using the repository browser.