1 | #*-------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Ammonia oxidation in a PFR |
---|
17 | *---------------------------------------------------------------------- |
---|
18 | * Solved problem from Fogler (1999) |
---|
19 | * Problem number: 6-8 |
---|
20 | * Page: 279 (Brazilian edition, 2002) |
---|
21 | *---------------------------------------------------------------------- |
---|
22 | * |
---|
23 | * Description: |
---|
24 | * In a PFR is occuring this simultaneous reaction catalyzed by |
---|
25 | * metal oxide in gas phase: |
---|
26 | * 1: 4NH3 + 5O2 -> 4NO + 6H2O |
---|
27 | * 2: 2NH3 + 1.5O2 -> N2 + 3H2O |
---|
28 | * 3: 2NO + O2 -> 2NO2 |
---|
29 | * 4: 4NH3 + 6NO -> 5N2 + 6H2O |
---|
30 | * The rates of reaction to one specific component are known. |
---|
31 | * They are: r1A, r2A, r3B and r4C. |
---|
32 | * The concentration are calculed as function of position in the |
---|
33 | * reactor. |
---|
34 | * |
---|
35 | * Assumptions: |
---|
36 | * * change time in reactor volume |
---|
37 | * * steady-state |
---|
38 | * * isotermic and isobaric system |
---|
39 | * * gaseous phase |
---|
40 | * |
---|
41 | * Specify: |
---|
42 | * * the inlet stream |
---|
43 | * * the kinetic parameters |
---|
44 | * |
---|
45 | *---------------------------------------------------------------------- |
---|
46 | * Author: Christiano D. W. Guerra and Rodolfo Rodrigues |
---|
47 | * $Id$ |
---|
48 | *--------------------------------------------------------------------*# |
---|
49 | |
---|
50 | using "types"; |
---|
51 | |
---|
52 | |
---|
53 | #*--------------------------------------------------------------------- |
---|
54 | * Example 6-8: in a PFR |
---|
55 | *--------------------------------------------------------------------*# |
---|
56 | |
---|
57 | FlowSheet pfr |
---|
58 | PARAMETERS |
---|
59 | NComp as Integer (Brief="Number of components"); |
---|
60 | NReac as Integer (Brief="Number of reactions"); |
---|
61 | stoic(NComp,NReac) as Real (Brief="Stoichiometric coefficients"); |
---|
62 | k(NReac) as Real (Brief="Specific velocity reaction"); |
---|
63 | Co(NComp) as conc_mol (Brief="Input molar concentration"); |
---|
64 | vo as flow_vol (Brief="Input volumetric flow"); |
---|
65 | |
---|
66 | VARIABLES |
---|
67 | F(NComp) as flow_mol (Brief="Molar flow", DisplayUnit='mol/min'); |
---|
68 | Fo(NComp) as flow_mol (Brief="Input molar flow", DisplayUnit='mol/min'); |
---|
69 | C(NComp) as conc_mol (Brief="Molar concentration", DisplayUnit='mol/l'); |
---|
70 | r(NComp,NReac)as reaction_mol(Brief="Relative rate of reaction", DisplayUnit='mol/min/l'); |
---|
71 | rate(NComp) as reaction_mol (Brief="Overall rate of reaction", DisplayUnit='mol/min/l'); |
---|
72 | V as volume (Brief="Reactor volume", DisplayUnit='l'); |
---|
73 | |
---|
74 | EQUATIONS |
---|
75 | "Change time in V" |
---|
76 | V = time*'l/s'; |
---|
77 | |
---|
78 | "Material balance" |
---|
79 | diff(F) = rate*'l/s'; |
---|
80 | |
---|
81 | "Molar concentration" |
---|
82 | C*sum(F) = F*sum(Co); |
---|
83 | |
---|
84 | "Input molar flow" |
---|
85 | Fo = Co*vo; |
---|
86 | |
---|
87 | "Relative rate of reaction 1" |
---|
88 | r(:,1) = stoic(:,1)*(k(1)*C(1)*C(2)^2)*'(m^3/kmol)^2/min'; |
---|
89 | |
---|
90 | "Relative rate of reaction 2" |
---|
91 | r(:,2) = stoic(:,2)*(k(2)*C(1)*C(2))*'m^3/kmol/min'; |
---|
92 | |
---|
93 | "Relative rate of reaction 3" |
---|
94 | r(:,3) = stoic(:,3)*(k(3)*C(2)*C(3)^2)*'(m^3/kmol)^2/min'; |
---|
95 | |
---|
96 | "Relative rate of reaction 4" |
---|
97 | r(:,4) = stoic(:,4)*(k(4)*C(3)*C(1)^(2/3))*'(m^3/kmol)^(2/3)/min'; |
---|
98 | |
---|
99 | "Overall rate of reaction" |
---|
100 | rate = sumt(r); |
---|
101 | |
---|
102 | SET |
---|
103 | NComp = 6; # 1:ammonia, 2:oxygen, 3:nitrogen oxide, |
---|
104 | # 4:water, 5:nitrogen and 6:nitrogen dioxide |
---|
105 | |
---|
106 | NReac = 4; # 1: 4A + 5B -> 4C + 6D, 2: 4A + 3B -> 2E + 6D |
---|
107 | # 3: 2C + B -> 2F, 4: 4A + 6C -> 5E + 6D |
---|
108 | |
---|
109 | stoic(:,1) = [ -1, -5/4, 1.0, 3/2, 0.0, 0.0]; # A + 5/4B -> C + 3/2D |
---|
110 | stoic(:,2) = [ -1, -3/4, 0.0, 3/2, 1/2, 0.0]; # A + 3/4B -> 1/2E + 3/2D |
---|
111 | stoic(:,3) = [ 0, -1.0, -2.0, 0.0, 0.0, 2.0]; # B + 2C -> 2F |
---|
112 | stoic(:,4) = [-2/3, 0.0, -1.0, 1.0, 5/6, 0.0]; # C + 2/3A -> 5/6E + D |
---|
113 | |
---|
114 | k = [5, 2, 10, 5]; |
---|
115 | |
---|
116 | vo = 10*'l/min'; |
---|
117 | Co = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0]*'mol/l'; |
---|
118 | |
---|
119 | INITIAL |
---|
120 | "Molar flow" |
---|
121 | F = Fo; |
---|
122 | |
---|
123 | OPTIONS |
---|
124 | TimeStep = 0.1; |
---|
125 | TimeEnd = 10; |
---|
126 | end |
---|