[889] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | *---------------------------------------------------------------------- |
---|
| 15 | * Author: Paula B. Staudt |
---|
| 16 | * $Id: flash.mso 879 2009-11-09 16:11:31Z bicca $ |
---|
| 17 | *--------------------------------------------------------------------*# |
---|
| 18 | |
---|
| 19 | using "tank"; |
---|
| 20 | |
---|
| 21 | Model flash |
---|
| 22 | |
---|
| 23 | ATTRIBUTES |
---|
| 24 | Pallete = true; |
---|
| 25 | Icon = "icon/Flash"; |
---|
| 26 | Brief = "Model of a Dynamic Flash Vessel."; |
---|
| 27 | Info = |
---|
| 28 | "== ASSUMPTIONS == |
---|
| 29 | * perfect mixing of both phases; |
---|
| 30 | * thermodynamics equilibrium. |
---|
| 31 | |
---|
| 32 | == SET == |
---|
| 33 | *Orientation: vessel position - vertical or horizontal; |
---|
| 34 | *Heads (bottom and top heads are identical) |
---|
| 35 | **elliptical: 2:1 elliptical heads (25% of vessel diameter); |
---|
| 36 | **hemispherical: hemispherical heads (50% of vessel diameter); |
---|
| 37 | **flat: flat heads (0% of vessel diameter); |
---|
| 38 | *Diameter: Vessel diameter; |
---|
| 39 | *Lenght: Side length of the cylinder shell; |
---|
| 40 | |
---|
| 41 | == SPECIFY == |
---|
| 42 | * the Inlet stream; |
---|
| 43 | * the outlet flows: OutletVapour.F and OutletLiquid.F; |
---|
| 44 | * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). |
---|
| 45 | |
---|
| 46 | == OPTIONAL == |
---|
| 47 | * the Flash model has three control ports |
---|
| 48 | ** TI OutletLiquid Temperature Indicator; |
---|
| 49 | ** PI OutletLiquid Pressure Indicator; |
---|
| 50 | ** LI Level Indicator; |
---|
| 51 | |
---|
| 52 | == INITIAL CONDITIONS == |
---|
| 53 | * Initial_Temperature : the Flash temperature (OutletLiquid.T); |
---|
| 54 | * Initial_Level : the Flash liquid level (Level); |
---|
| 55 | * Initial_Composition : (NoComps) OutletLiquid compositions. |
---|
| 56 | "; |
---|
| 57 | |
---|
| 58 | PARAMETERS |
---|
| 59 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 60 | outer NComp as Integer (Brief = "Number of components", Lower = 1); |
---|
| 61 | |
---|
| 62 | Mw(NComp) as molweight (Brief="Mol Weight", Hidden=true); |
---|
| 63 | Gconst as acceleration (Brief="Gravity Acceleration",Default=9.81,Hidden=true); |
---|
| 64 | |
---|
| 65 | Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); |
---|
| 66 | Temperature_Initial as temperature (Brief="Initial Liquid Temperature", Default = 330); |
---|
| 67 | Composition_Initial(NComp) as fraction (Brief="Initial Composition", Default = 0.10); |
---|
| 68 | |
---|
| 69 | SET |
---|
| 70 | |
---|
| 71 | Mw=PP.MolecularWeight(); |
---|
| 72 | |
---|
| 73 | Gconst = 9.81 * 'm/(s^2)'; |
---|
| 74 | |
---|
| 75 | VARIABLES |
---|
| 76 | |
---|
| 77 | Geometry as VesselVolume (Brief="Vessel Geometry", Symbol=" "); |
---|
| 78 | |
---|
| 79 | in Inlet as stream (Brief="Feed Stream", PosX=0, PosY=0.48, Symbol="_{in}"); |
---|
| 80 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.43, PosY=1, Symbol="_{out}^{Liquid}"); |
---|
| 81 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.43, PosY=0, Symbol="_{out}^{Vapour}"); |
---|
| 82 | in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.81, Protected =true,Symbol="Q_{in}"); |
---|
| 83 | |
---|
| 84 | TotalHoldup(NComp) as mol (Brief="Molar Holdup in the Vessel", Protected=true); |
---|
| 85 | LiquidHoldup as mol (Brief="Molar liquid holdup", Protected=true); |
---|
| 86 | VapourHoldup as mol (Brief="Molar vapour holdup", Protected=true); |
---|
| 87 | |
---|
| 88 | E as energy (Brief="Total Energy Holdup in the Vessel", Protected=true); |
---|
| 89 | vL as volume_mol (Brief="Liquid Molar Volume", Protected=true); |
---|
| 90 | vV as volume_mol (Brief="Vapour Molar volume", Protected=true); |
---|
| 91 | vfrac as positive (Brief="Vapourization fraction", Symbol="\phi", Protected=true); |
---|
| 92 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}", Protected=true); |
---|
| 93 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); |
---|
| 94 | |
---|
| 95 | Peq as pressure (Brief="Equilibrium pressure on the liquid surface", Protected=true, Symbol="\Delta P_{eq}"); |
---|
| 96 | Pstatic as pressure (Brief="Static head at the bottom of the tank", Protected = true, Symbol="P_{static}^{Liquid}"); |
---|
| 97 | |
---|
| 98 | out TI as control_signal (Brief="Temperature Indicator", PosX=1, PosY=0.39, Protected=true); |
---|
| 99 | out PI as control_signal (Brief="Pressure Indicator", PosX=1, PosY=0.21, Protected=true); |
---|
| 100 | out LI as control_signal (Brief="Level Indicator", PosX=1, PosY=0.59, Protected=true); |
---|
| 101 | |
---|
| 102 | INITIAL |
---|
| 103 | |
---|
| 104 | "Initial level Percent" |
---|
| 105 | LI = Levelpercent_Initial; |
---|
| 106 | |
---|
| 107 | "Initial Outlet Liquid Temperature" |
---|
| 108 | OutletLiquid.T = Temperature_Initial; |
---|
| 109 | |
---|
| 110 | "Initial Outlet Liquid Composition Normalized" |
---|
| 111 | OutletLiquid.z(1:NComp - 1) = Composition_Initial(1:NComp - 1)/sum(Composition_Initial); |
---|
| 112 | |
---|
| 113 | EQUATIONS |
---|
| 114 | |
---|
| 115 | "Component Molar Balance" |
---|
| 116 | diff(TotalHoldup)=Inlet.F*Inlet.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z; |
---|
| 117 | |
---|
| 118 | "Energy Balance" |
---|
| 119 | diff(E) = Inlet.F*Inlet.h - OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h + InletQ; |
---|
| 120 | |
---|
| 121 | "Molar Holdup" |
---|
| 122 | TotalHoldup = LiquidHoldup*OutletLiquid.z + VapourHoldup*OutletVapour.z; |
---|
| 123 | |
---|
| 124 | "Energy Holdup" |
---|
| 125 | E = LiquidHoldup*OutletLiquid.h + VapourHoldup*OutletVapour.h - OutletLiquid.P*Geometry.Vtotal; |
---|
| 126 | |
---|
| 127 | "Mol fraction normalisation" |
---|
| 128 | sum(OutletLiquid.z)=1.0; |
---|
| 129 | |
---|
| 130 | "Mol fraction normalisation" |
---|
| 131 | sum(OutletLiquid.z)=sum(OutletVapour.z); |
---|
| 132 | |
---|
| 133 | "Vaporization Fraction" |
---|
| 134 | OutletVapour.F = Inlet.F * vfrac; |
---|
| 135 | |
---|
| 136 | "Liquid Volume" |
---|
| 137 | vL = PP.LiquidVolume(OutletLiquid.T, Peq, OutletLiquid.z); |
---|
| 138 | |
---|
| 139 | "Vapour Volume" |
---|
| 140 | vV = PP.VapourVolume(OutletVapour.T, Peq, OutletVapour.z); |
---|
| 141 | |
---|
| 142 | "Chemical Equilibrium" |
---|
| 143 | PP.LiquidFugacityCoefficient(OutletLiquid.T, Peq, OutletLiquid.z)*OutletLiquid.z = |
---|
| 144 | PP.VapourFugacityCoefficient(OutletVapour.T, Peq, OutletVapour.z)*OutletVapour.z; |
---|
| 145 | |
---|
| 146 | "Thermal Equilibrium" |
---|
| 147 | OutletVapour.T = OutletLiquid.T; |
---|
| 148 | |
---|
| 149 | "Mechanical Equilibrium for the Vapour Phase" |
---|
| 150 | OutletVapour.P = Peq; |
---|
| 151 | |
---|
| 152 | "Static Head" |
---|
| 153 | Pstatic = PP.LiquidDensity(OutletLiquid.T, Peq, OutletLiquid.z) * Gconst * Geometry.Level; |
---|
| 154 | |
---|
| 155 | "Mechanical Equilibrium for the Liquid Phase" |
---|
| 156 | OutletLiquid.P = Peq + Pstatic; |
---|
| 157 | |
---|
| 158 | "Pressure Drop" |
---|
| 159 | OutletLiquid.P = Inlet.P - Pdrop; |
---|
| 160 | |
---|
| 161 | "Pressure Ratio" |
---|
| 162 | OutletLiquid.P = Inlet.P * Pratio; |
---|
| 163 | |
---|
| 164 | "Geometry Constraint" |
---|
| 165 | Geometry.Vtotal = LiquidHoldup * vL + VapourHoldup * vV; |
---|
| 166 | |
---|
| 167 | "Temperature indicator" |
---|
| 168 | TI * 'K' = OutletLiquid.T; |
---|
| 169 | |
---|
| 170 | "Pressure indicator" |
---|
| 171 | PI * 'atm' = OutletLiquid.P; |
---|
| 172 | |
---|
| 173 | "Level indicator" |
---|
| 174 | LI*Geometry.Vtotal= Geometry.Vfilled; |
---|
| 175 | |
---|
| 176 | "Liquid Level" |
---|
| 177 | LiquidHoldup * vL = Geometry.Vfilled; |
---|
| 178 | |
---|
| 179 | end |
---|
| 180 | |
---|
| 181 | Model flash_steady |
---|
| 182 | |
---|
| 183 | ATTRIBUTES |
---|
| 184 | Pallete = true; |
---|
| 185 | Icon = "icon/Flash"; |
---|
| 186 | Brief = "Model of a static PH flash."; |
---|
| 187 | Info = |
---|
| 188 | "This model is for using the flashPH routine available on VRTherm. |
---|
| 189 | |
---|
| 190 | == ASSUMPTIONS == |
---|
| 191 | * perfect mixing of both phases; |
---|
| 192 | * thermodynamics equilibrium. |
---|
| 193 | * static model. |
---|
| 194 | |
---|
| 195 | == SPECIFY == |
---|
| 196 | * The Inlet stream; |
---|
| 197 | * The heat duty; |
---|
| 198 | * The outlet pressure. |
---|
| 199 | "; |
---|
| 200 | |
---|
| 201 | PARAMETERS |
---|
| 202 | |
---|
| 203 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
| 204 | outer NComp as Integer; |
---|
| 205 | |
---|
| 206 | VARIABLES |
---|
| 207 | |
---|
| 208 | in Inlet as stream (Brief="Feed Stream", PosX=0, PosY=0.48, Symbol="_{in}"); |
---|
| 209 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.43, PosY=1, Symbol="_{out}^{Liquid}"); |
---|
| 210 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.43, PosY=0, Symbol="_{out}^{Vapour}"); |
---|
| 211 | in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.81, Protected =true,Symbol="Q_{in}"); |
---|
| 212 | |
---|
| 213 | vfrac as fraction (Brief="Vaporization fraction", Symbol="\phi", Protected =true); |
---|
| 214 | h as enth_mol (Brief="Mixture enthalpy", Hidden =true); |
---|
| 215 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}", Protected =true); |
---|
| 216 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected =true); |
---|
| 217 | |
---|
| 218 | EQUATIONS |
---|
| 219 | |
---|
| 220 | if vfrac > 0 and vfrac <1 |
---|
| 221 | |
---|
| 222 | then |
---|
| 223 | "The flash calculation" |
---|
| 224 | [vfrac, OutletLiquid.z, OutletVapour.z] = PP.Flash(OutletVapour.T, OutletVapour.P, Inlet.z); |
---|
| 225 | |
---|
| 226 | else |
---|
| 227 | "Chemical equilibrium" |
---|
| 228 | [vfrac,OutletLiquid.z,OutletVapour.z]=PP.FlashPH(OutletLiquid.P,h,Inlet.z); |
---|
| 229 | |
---|
| 230 | end |
---|
| 231 | |
---|
| 232 | "Global Molar Balance" |
---|
| 233 | Inlet.F = OutletVapour.F + OutletLiquid.F; |
---|
| 234 | |
---|
| 235 | "Vapour Fraction" |
---|
| 236 | OutletVapour.F = Inlet.F * vfrac; |
---|
| 237 | |
---|
| 238 | "Energy Balance" |
---|
| 239 | Inlet.F*(h - Inlet.h) = InletQ; |
---|
| 240 | Inlet.F*h = Inlet.F*(1-vfrac)*OutletLiquid.h + Inlet.F*vfrac*OutletVapour.h; |
---|
| 241 | |
---|
| 242 | "Thermal Equilibrium" |
---|
| 243 | OutletVapour.T = OutletLiquid.T; |
---|
| 244 | |
---|
| 245 | "Mechanical Equilibrium" |
---|
| 246 | OutletVapour.P = OutletLiquid.P; |
---|
| 247 | |
---|
| 248 | "Pressure Drop" |
---|
| 249 | OutletLiquid.P = Inlet.P - Pdrop; |
---|
| 250 | |
---|
| 251 | "Pressure Ratio" |
---|
| 252 | OutletLiquid.P = Inlet.P * Pratio; |
---|
| 253 | |
---|
| 254 | end |
---|
| 255 | |
---|
| 256 | Model FlashPHSteady |
---|
| 257 | ATTRIBUTES |
---|
| 258 | Pallete = false; |
---|
| 259 | Icon = "icon/Flash"; |
---|
| 260 | Brief = "Another model of a static PH flash."; |
---|
| 261 | Info = |
---|
| 262 | "This model shows how to model a pressure enthalpy flash |
---|
| 263 | directly with the EMSO modeling language. |
---|
| 264 | |
---|
| 265 | This model is for demonstration purposes only, the flashPH |
---|
| 266 | routine available on VRTherm is much more robust. |
---|
| 267 | |
---|
| 268 | == Assumptions == |
---|
| 269 | * perfect mixing of both phases; |
---|
| 270 | |
---|
| 271 | == Specify == |
---|
| 272 | * the feed stream; |
---|
| 273 | * the heat duty; |
---|
| 274 | * the outlet pressure. |
---|
| 275 | "; |
---|
| 276 | |
---|
| 277 | PARAMETERS |
---|
| 278 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
| 279 | outer NComp as Integer; |
---|
| 280 | B as Real(Default=1000, Brief="Regularization Factor"); |
---|
| 281 | |
---|
| 282 | VARIABLES |
---|
| 283 | in Inlet as stream(Brief="Feed Stream", PosX=0, PosY=0.5421, Symbol="_{in}"); |
---|
| 284 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.4790, PosY=1, Symbol="_{outL}"); |
---|
| 285 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.4877, PosY=0, Symbol="_{outV}"); |
---|
| 286 | in InletQ as power (Brief="Rate of heat supply", PosX=1, PosY=0.7559, Symbol="_{in}"); |
---|
| 287 | vfrac as fraction(Brief="Vaporization fraction", Symbol="\phi"); |
---|
| 288 | vsat as Real(Lower=-0.1, Upper=1.1, Brief="Vaporization fraction if saturated", Symbol="\phi_{sat}"); |
---|
| 289 | Tsat as temperature(Lower=173, Upper=1473, Brief="Temperature if saturated"); |
---|
| 290 | xsat(NComp) as Real(Lower=0, Upper=1, Brief="Liquid composition if saturated"); |
---|
| 291 | ysat(NComp) as Real(Lower=0, Upper=1, Brief="Vapour composition if saturated"); |
---|
| 292 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
| 293 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
| 294 | |
---|
| 295 | zero_one as fraction(Brief="Regularization Variable"); |
---|
| 296 | one_zero as fraction(Brief="Regularization Variable"); |
---|
| 297 | |
---|
| 298 | EQUATIONS |
---|
| 299 | "Chemical equilibrium" |
---|
| 300 | PP.LiquidFugacityCoefficient(Tsat, OutletL.P, xsat)*xsat = |
---|
| 301 | PP.VapourFugacityCoefficient(Tsat, OutletV.P, ysat)*ysat; |
---|
| 302 | |
---|
| 303 | "Global Molar Balance" |
---|
| 304 | Inlet.F = OutletV.F + OutletL.F; |
---|
| 305 | OutletV.F = Inlet.F * vfrac; |
---|
| 306 | |
---|
| 307 | "Component Molar Balance" |
---|
| 308 | Inlet.F*Inlet.z = OutletL.F*xsat + OutletV.F*ysat; |
---|
| 309 | sum(xsat) = sum(ysat); |
---|
| 310 | |
---|
| 311 | "Energy Balance if saturated" |
---|
| 312 | Inlet.F*Inlet.h + InletQ = |
---|
| 313 | Inlet.F*(1-vsat)*PP.LiquidEnthalpy(Tsat, OutletL.P, xsat) + |
---|
| 314 | Inlet.F*vsat*PP.VapourEnthalpy(Tsat, OutletV.P, ysat); |
---|
| 315 | |
---|
| 316 | "Real Energy Balance" |
---|
| 317 | Inlet.F*Inlet.h + InletQ = |
---|
| 318 | Inlet.F*(1-vfrac)*OutletL.h + Inlet.F*vfrac*OutletV.h; |
---|
| 319 | |
---|
| 320 | "Thermal Equilibrium" |
---|
| 321 | OutletV.T = OutletL.T; |
---|
| 322 | |
---|
| 323 | "Mechanical Equilibrium" |
---|
| 324 | OutletV.P = OutletL.P; |
---|
| 325 | |
---|
| 326 | "Pressure Drop" |
---|
| 327 | OutletL.P = Inlet.P - Pdrop; |
---|
| 328 | |
---|
| 329 | "Pressure Ratio" |
---|
| 330 | OutletL.P = Inlet.P * Pratio; |
---|
| 331 | |
---|
| 332 | # regularization functions |
---|
| 333 | zero_one = (1 + tanh(B * vsat))/2; |
---|
| 334 | one_zero = (1 - tanh(B * (vsat - 1)))/2; |
---|
| 335 | |
---|
| 336 | vfrac = zero_one * one_zero * vsat + 1 - one_zero; |
---|
| 337 | OutletL.z = zero_one*one_zero*xsat + (1-zero_one*one_zero)*Inlet.z; |
---|
| 338 | OutletV.z = zero_one*one_zero*ysat + (1-zero_one*one_zero)*Inlet.z; |
---|
| 339 | end |
---|