[574] | 1 | #*--------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *---------------------------------------------------------------------- |
---|
| 16 | * 7. Diffusion with chemical reaction in a one dimensional slab |
---|
| 17 | *---------------------------------------------------------------------- |
---|
| 18 | * |
---|
| 19 | * Description: |
---|
| 20 | * This problem is part of a collection of 10 representative |
---|
| 21 | * problems in Chemical Engineering for solution by numerical methods |
---|
| 22 | * developed for Cutlip (1998). |
---|
| 23 | * |
---|
| 24 | * Subject: |
---|
| 25 | * * Transport Phenomena |
---|
| 26 | * * Reaction Engineering |
---|
| 27 | * |
---|
| 28 | * Concepts utilized: |
---|
| 29 | * Methods for solving second order ODEs with 2 point boundary |
---|
| 30 | * values typically used in transport phenomena and reaction kinetics. |
---|
| 31 | * |
---|
| 32 | * Numerical method: |
---|
| 33 | * * Simultaneous ODEs with split boundary conditions |
---|
| 34 | * * Resolved by finite difference method |
---|
| 35 | * |
---|
| 36 | * Reference: |
---|
| 37 | * * CUTLIP et al. A collection of 10 numerical problems in |
---|
| 38 | * chemical engineering solved by various mathematical software |
---|
| 39 | * packages. Comp. Appl. in Eng. Education. v. 6, 169-180, 1998. |
---|
| 40 | * * More informations and a detailed description of all problems |
---|
| 41 | * is available online in http://www.polymath-software.com/ASEE |
---|
| 42 | * |
---|
| 43 | *---------------------------------------------------------------------- |
---|
| 44 | * Author: Rodolfo Rodrigues |
---|
| 45 | * GIMSCOP/UFRGS - Group of Integration, Modeling, Simulation, |
---|
| 46 | * Control, and Optimization of Processes |
---|
| 47 | * $Id$ |
---|
| 48 | *--------------------------------------------------------------------*# |
---|
| 49 | using "types"; |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | Model problem |
---|
| 54 | PARAMETERS |
---|
| 55 | outer N as Integer (Brief="Number of discrete points", Lower=3); |
---|
| 56 | |
---|
| 57 | Co as conc_mol (Brief="Constant concentration at the surface"); |
---|
| 58 | D as diffusivity (Brief="Binary diffusion coefficient"); |
---|
| 59 | k as Real (Brief="Homogeneous reaction rate constant", Unit='1/s'); |
---|
| 60 | L as length (Brief="Bottom surface"); |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | VARIABLES |
---|
| 64 | C(N+2) as conc_mol (Brief="Concentration of reactant"); |
---|
| 65 | z(N+2) as length (Brief="Distance", Default=1e-3); |
---|
| 66 | dz as length_delta (Brief="Distance increment"); |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | EQUATIONS |
---|
| 70 | "Discrete interval" |
---|
| 71 | dz = (z(N+2) - z(1))/(N+1); |
---|
| 72 | |
---|
| 73 | for i in [2:(N+1)] do |
---|
| 74 | "Concentration of reactant" |
---|
| 75 | (C(i+1) - 2*C(i)+ C(i-1))/(z(i) - z(i-1))^2 |
---|
| 76 | = (k/D)*C(i); |
---|
| 77 | |
---|
| 78 | "Discrete length" |
---|
| 79 | z(i) = z(i-1) + dz; |
---|
| 80 | end |
---|
| 81 | |
---|
| 82 | # Boundary conditions |
---|
| 83 | "Initial and boundary condition" # z = 0 |
---|
| 84 | C(1) = Co; |
---|
| 85 | |
---|
| 86 | "Upper boundary" # z = L |
---|
| 87 | (C(N+2) - C(N+1))/(z(N+2) - z(N+1)) = 0*'kmol/m^4'; |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | SET |
---|
| 91 | Co= 0.2*'kmol/m^3'; |
---|
| 92 | D = 1.2e-9*'m^2/s'; |
---|
| 93 | k = 1e-3/'s'; |
---|
| 94 | L = 1e-3*'m'; |
---|
| 95 | end |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | FlowSheet numerical_solution |
---|
| 100 | PARAMETERS |
---|
| 101 | N as Integer; |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | DEVICES |
---|
| 105 | reac as problem; |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | SET |
---|
| 109 | N = 10; # Number of discrete points |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | SPECIFY |
---|
| 113 | reac.z(1) = 0*'m'; |
---|
| 114 | |
---|
| 115 | reac.z(N+2) = reac.L; |
---|
| 116 | |
---|
| 117 | OPTIONS |
---|
| 118 | Dynamic = false; |
---|
| 119 | end |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | FlowSheet comparative |
---|
| 124 | PARAMETERS |
---|
| 125 | N as Integer; |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | VARIABLES |
---|
| 129 | C_(N+2) as conc_mol (Brief="Concentration of reactant by analytical solution"); |
---|
| 130 | |
---|
| 131 | r_ as Real (Brief="Pearson product-moment correlation coefficient"); |
---|
| 132 | |
---|
| 133 | Cm as conc_mol (Brief="Arithmetic mean of calculated C"); |
---|
| 134 | C_m as conc_mol (Brief="Arithmetic mean of analytical C"); |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | DEVICES |
---|
| 138 | reac as problem; |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | SET |
---|
| 142 | N = 10; # Number of discrete points |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | EQUATIONS |
---|
| 146 | "Analytical solution" |
---|
| 147 | C_ = reac.Co*cosh(reac.L*sqrt(reac.k/reac.D)*(1 - reac.z/reac.L)) |
---|
| 148 | /cosh(reac.L*sqrt(reac.k/reac.D)); |
---|
| 149 | |
---|
| 150 | "Pearson correlation coefficient" # used by softwares like MS Excel |
---|
| 151 | r_ = (sum((reac.C - Cm)*(C_ - C_m)))/sqrt(sum((reac.C - Cm)^2)*sum((C_ - C_m)^2)); |
---|
| 152 | |
---|
| 153 | "Arithmetic mean of C" |
---|
| 154 | Cm = sum(reac.C)/(N+1); |
---|
| 155 | |
---|
| 156 | "Arithmetic mean of C_" |
---|
| 157 | C_m = sum(C_)/(N+1); |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | SPECIFY |
---|
| 161 | reac.z(1) = 0*'m'; |
---|
| 162 | |
---|
| 163 | reac.z(N+2) = reac.L; |
---|
| 164 | |
---|
| 165 | OPTIONS |
---|
| 166 | Dynamic = false; |
---|
| 167 | end |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | FlowSheet analytical_solution |
---|
| 171 | PARAMETERS |
---|
| 172 | Co as conc_mol; |
---|
| 173 | L as length; |
---|
| 174 | k as Real(Unit='1/s'); |
---|
| 175 | D as diffusivity; |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | VARIABLES |
---|
| 179 | C as conc_mol (Default=0.2); |
---|
| 180 | z as length (Default=1e-3); |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | EQUATIONS |
---|
| 184 | "Change time in z" |
---|
| 185 | z = time*'m/s'; |
---|
| 186 | |
---|
| 187 | "Analytical solution" |
---|
| 188 | C = Co*cosh(L*sqrt(k/D)*(1 - z/L))/cosh(L*sqrt(k/D)); |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | SET |
---|
| 192 | Co= 0.2*'kmol/m^3'; |
---|
| 193 | D = 1.2e-9*'m^2/s'; |
---|
| 194 | k = 1e-3/'s'; |
---|
| 195 | L = 1e-3*'m'; |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | OPTIONS |
---|
| 199 | TimeStart = 0; |
---|
| 200 | TimeStep = 1e-6; |
---|
| 201 | TimeEnd = 1e-3; |
---|
| 202 | end |
---|