[695] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *-------------------------------------------------------------------- |
---|
| 16 | * Sample file for for a high-index optimal control problem. |
---|
| 17 | *-------------------------------------------------------------------- |
---|
| 18 | * Author: Rafael de Pelegrini Soares |
---|
| 19 | * $Id$ |
---|
| 20 | *--------------------------------------------------------------------*# |
---|
| 21 | using "types"; |
---|
| 22 | |
---|
| 23 | Model FlashRaoult |
---|
| 24 | ATTRIBUTES |
---|
| 25 | Info = " |
---|
| 26 | This is a very simple (wrong) model with dynamics only on the energy. |
---|
| 27 | |
---|
| 28 | It should be used for ilustration purposes only."; |
---|
| 29 | |
---|
| 30 | PARAMETERS |
---|
| 31 | NComp as Integer; |
---|
| 32 | |
---|
| 33 | # Antoine constants |
---|
| 34 | A(NComp) as Real; |
---|
| 35 | B(NComp) as Real; |
---|
| 36 | C(NComp) as Real; |
---|
| 37 | |
---|
| 38 | Cv as Real(Unit = 'J/mol/K'); |
---|
[696] | 39 | DHvap(NComp) as energy_mol; |
---|
[695] | 40 | |
---|
| 41 | VARIABLES |
---|
| 42 | F as flow_mol; |
---|
| 43 | L as flow_mol; |
---|
| 44 | V as flow_mol; |
---|
| 45 | z(NComp) as fraction; |
---|
| 46 | x(NComp) as fraction; |
---|
| 47 | y(NComp) as fraction; |
---|
| 48 | n(NComp) as mol; |
---|
| 49 | nt as mol; |
---|
| 50 | |
---|
| 51 | T as temperature; |
---|
| 52 | P as pressure; |
---|
| 53 | Psat(NComp) as pressure; |
---|
| 54 | |
---|
| 55 | Q as power; |
---|
| 56 | E as energy; |
---|
| 57 | |
---|
| 58 | EQUATIONS |
---|
| 59 | "Component Molar Balance" |
---|
| 60 | diff(n) = F*z - (L*x + V*y); |
---|
| 61 | |
---|
| 62 | nt = sum(n); |
---|
| 63 | x = n/nt; |
---|
| 64 | |
---|
| 65 | "Energy Balance" |
---|
[696] | 66 | diff(E) = Q - V*sum(DHvap*y); |
---|
[695] | 67 | |
---|
| 68 | "Internal energy" |
---|
| 69 | E = nt*Cv*T; |
---|
| 70 | |
---|
| 71 | "Raoult's Law" |
---|
| 72 | P*y = Psat*x; |
---|
| 73 | |
---|
| 74 | "Antoine for Vapour Pressure" |
---|
| 75 | ln(Psat/'kPa') = A - B/(T/'K'- 273.15 + C); |
---|
| 76 | |
---|
| 77 | "Molar Fraction sum" |
---|
| 78 | sum(y) = 1; |
---|
| 79 | end |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | FlowSheet FlashRaoultTest |
---|
| 83 | DEVICES |
---|
| 84 | fl as FlashRaoult; |
---|
| 85 | |
---|
| 86 | SET |
---|
| 87 | fl.NComp = 3; |
---|
| 88 | # Antoine constants (Acetone, Acetonitrile, Nitromethane) |
---|
| 89 | fl.A = [14.31, 14.89, 14.75]; |
---|
| 90 | fl.B = [2756, 3413, 3331]; |
---|
| 91 | fl.C = [228, 250, 227]; |
---|
| 92 | |
---|
| 93 | fl.Cv = 30 * 'J/mol/K'; |
---|
[696] | 94 | fl.DHvap = [10, 20, 30] * 'kJ/mol'; |
---|
[695] | 95 | |
---|
| 96 | EQUATIONS |
---|
[697] | 97 | # Disturb |
---|
| 98 | #if time < 0.5 * 'h' then |
---|
| 99 | # fl.z = [0.45, 0.35, 0.2]; |
---|
| 100 | #else |
---|
| 101 | # fl.z = [0.55, 0.25, 0.2]; |
---|
| 102 | #end |
---|
[695] | 103 | |
---|
| 104 | SPECIFY |
---|
[697] | 105 | # Feed condition |
---|
[695] | 106 | fl.F = 1 * 'kmol/h'; |
---|
[697] | 107 | # Steady-state feed |
---|
| 108 | #fl.z = [0.45, 0.35, 0.2]; |
---|
| 109 | # Disturb on feed composition |
---|
| 110 | fl.z = [0.55, 0.25, 0.2]; |
---|
| 111 | |
---|
| 112 | # Desired production of y1 (index 2 - will determine the "perfect" heat profile) |
---|
[695] | 113 | fl.V = 0.1 * 'kmol/h'; |
---|
[697] | 114 | fl.y(1) = 0.7; |
---|
[696] | 115 | fl.nt = 1 * 'kmol'; |
---|
[697] | 116 | |
---|
| 117 | # Default specification (index 1 - heat is given) |
---|
| 118 | #fl.V = 0.1 * 'kmol/h'; |
---|
| 119 | #fl.Q = 0.37 * 'kW'; |
---|
| 120 | #fl.nt = 1 * 'kmol'; |
---|
[695] | 121 | |
---|
[697] | 122 | # Fixed Temperature (index 2 - will determine the "perfect" heat profile) |
---|
| 123 | #fl.T = (90+273.15) * 'K'; |
---|
| 124 | #fl.V = 0.1 * 'kmol/h'; |
---|
| 125 | #fl.nt = 1 * 'kmol'; |
---|
| 126 | |
---|
| 127 | # Fixed Pressure (index 2 - will determine the "perfect" heat profile) |
---|
[695] | 128 | #fl.P = 1.2 * 'atm'; |
---|
[697] | 129 | #fl.V = 0.1 * 'kmol/h'; |
---|
| 130 | #fl.nt = 1 * 'kmol'; |
---|
| 131 | |
---|
[695] | 132 | INITIAL |
---|
[696] | 133 | #fl.T = (80+273.15) * 'K'; |
---|
| 134 | #fl.nt = 1 * 'kmol'; |
---|
[697] | 135 | |
---|
| 136 | # Steady-state composition with feed = [0.45, 0.35, 0.2]; |
---|
| 137 | fl.x(1) = 0.4222; |
---|
| 138 | fl.x(2) = 0.3622; |
---|
| 139 | |
---|
| 140 | # steady state compositions |
---|
| 141 | # diff(fl.n(1:2)) = 0 * 'mol/s'; |
---|
[695] | 142 | |
---|
| 143 | OPTIONS |
---|
[697] | 144 | TimeEnd = 4; |
---|
| 145 | TimeStep = 0.05; |
---|
[696] | 146 | TimeUnit = 'h'; |
---|
| 147 | |
---|
[697] | 148 | #DAESolver(File="dasslc"); # slow integration |
---|
| 149 | DAESolver(File="mebdf"); # much faster |
---|
[696] | 150 | |
---|
[695] | 151 | Dynamic = true; |
---|
| 152 | end |
---|