1 | #*--------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Model of a simplified Gibbs reactor. |
---|
17 | * This model requires VRTherm (www.vrtech.com.br) to run. |
---|
18 | *---------------------------------------------------------------------- |
---|
19 | * |
---|
20 | * |
---|
21 | * |
---|
22 | *---------------------------------------------------------------------- |
---|
23 | * Author: Rafael de Pelegrini Soares |
---|
24 | * $Id$ |
---|
25 | *--------------------------------------------------------------------*# |
---|
26 | |
---|
27 | using "types"; |
---|
28 | |
---|
29 | Model gibbs_reactor_simple |
---|
30 | ATTRIBUTES |
---|
31 | Info = |
---|
32 | "Model for reactor in thermodynamic equilibrium based on Gibbs free |
---|
33 | energy. |
---|
34 | |
---|
35 | The user should specify T, P and ni. |
---|
36 | |
---|
37 | There is a correction for G0 as a function of the temperature. |
---|
38 | This correction considers that H0 does not depend on the temperature. |
---|
39 | This is a good approximation for most cases (less than 2% of error)"; |
---|
40 | |
---|
41 | PARAMETERS |
---|
42 | outer PP as Plugin (Brief="External physical properties", Type="PP"); |
---|
43 | outer NComp as Integer (Brief="Number of components", Default=1); |
---|
44 | |
---|
45 | nu(NComp) as Real(Symbol="\nu_i"); |
---|
46 | |
---|
47 | R as Real(Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
48 | T0 as temperature(Default = 298.15, Symbol="T_{298}"); |
---|
49 | P0 as Real(Default=1, Unit='bar', Symbol="P^0"); |
---|
50 | g0(NComp) as energy_mol (Brief="Gibbs energy in standard state", Symbol="g^0_{298,i}"); |
---|
51 | h0(NComp) as energy_mol (Brief="Enthalpy in standard state", Symbol="h^0_{298,i}"); |
---|
52 | |
---|
53 | SET |
---|
54 | g0 = PP.IdealGasGibbsOfFormationAt25C(); |
---|
55 | h0 = PP.IdealGasEnthalpyOfFormationAt25C(); |
---|
56 | |
---|
57 | VARIABLES |
---|
58 | T as temperature; |
---|
59 | P as pressure; |
---|
60 | n0(NComp) as positive(Brief="Initial number of mols", Unit='mol', Symbol="n_{i,0}"); |
---|
61 | n(NComp) as positive(Brief="Number of mols at equilibrium", Unit='mol', Symbol="n_i"); |
---|
62 | advance as Real(Unit='mol', Symbol="\epsilon"); |
---|
63 | |
---|
64 | K as positive(Brief="Reaction equilibrium constant at T"); |
---|
65 | K0 as positive(Brief="Reaction equilibrium constant at T0", Symbol="K_{298}"); |
---|
66 | |
---|
67 | phi(NComp) as fugacity(Brief="Fugacity coefficient", Default=1, Symbol="\phi_i"); |
---|
68 | |
---|
69 | EQUATIONS |
---|
70 | "Equilibrium constant at 298 K" |
---|
71 | K0 = exp(-sum(nu*g0)/(R*T0)); |
---|
72 | "Equilibrium constant at T" |
---|
73 | K = K0 * exp(-sum(nu*h0)/R*(1/T - 1/T0)); |
---|
74 | |
---|
75 | "Equilibrium rule" |
---|
76 | K = prod( (n/sum(n)*phi*P/P0) ^ nu); |
---|
77 | |
---|
78 | "Reaction advance" |
---|
79 | n = n0 + nu * advance; |
---|
80 | |
---|
81 | "Fugacity coefficient" |
---|
82 | phi = PP.VapourFugacityCoefficient(T, P, n/sum(n)); |
---|
83 | end |
---|
84 | |
---|
85 | # Ethane decomposition to produce ethylene and hydrogen at 1000 degC |
---|
86 | FlowSheet gibbs_reactor_simple_sample as gibbs_reactor_simple |
---|
87 | PARAMETERS |
---|
88 | PP as Plugin(Brief="Physical Properties", |
---|
89 | Type="PP", |
---|
90 | Components = ["ethane", "ethylene", "hydrogen"], |
---|
91 | LiquidModel = "PR", |
---|
92 | VapourModel = "PR" |
---|
93 | ); |
---|
94 | NComp as Integer; |
---|
95 | |
---|
96 | SET |
---|
97 | NComp = PP.NumberOfComponents; |
---|
98 | nu = [-1, 1, 1]; |
---|
99 | |
---|
100 | SPECIFY |
---|
101 | T = (1000 + 273.15) * 'K'; |
---|
102 | P = 1 * 'atm'; |
---|
103 | n0 = [1, 0, 0] * 'mol'; |
---|
104 | |
---|
105 | # Expected results: |
---|
106 | # advance = 0.9; |
---|
107 | # n = [0.1, 0.9, 0.9] |
---|
108 | |
---|
109 | OPTIONS |
---|
110 | Dynamic = false; |
---|
111 | end |
---|
112 | |
---|
113 | |
---|
114 | # Ethanol production by ethylene hydratation at 250 degC and 35 bar |
---|
115 | FlowSheet gibbs_reactor_simple_sample2 as gibbs_reactor_simple |
---|
116 | PARAMETERS |
---|
117 | PP as Plugin(Brief="Physical Properties", |
---|
118 | Type="PP", |
---|
119 | Components = ["ethylene", "water", "ethanol"], |
---|
120 | LiquidModel = "IdealLiquid", |
---|
121 | VapourModel = "PR" |
---|
122 | ); |
---|
123 | NComp as Integer; |
---|
124 | |
---|
125 | SET |
---|
126 | NComp = PP.NumberOfComponents; |
---|
127 | nu = [-1, -1, 1]; |
---|
128 | |
---|
129 | SPECIFY |
---|
130 | T = (250 + 273.15) * 'K'; |
---|
131 | P = 35 * 'atm'; |
---|
132 | n0 = [1, 5, 0] * 'mol'; |
---|
133 | |
---|
134 | # Expected results: |
---|
135 | # advance = 0.21; |
---|
136 | |
---|
137 | OPTIONS |
---|
138 | Dynamic = false; |
---|
139 | end |
---|
140 | |
---|
141 | # Water-gas-shift T = 1100 K, P = 1 bar |
---|
142 | FlowSheet gibbs_reactor_simple_sample3 as gibbs_reactor_simple |
---|
143 | PARAMETERS |
---|
144 | PP as Plugin(Brief="Physical Properties", |
---|
145 | Type="PP", |
---|
146 | Components = ["carbon monoxide", "water", "carbon dioxide", "hydrogen"], |
---|
147 | LiquidModel = "IdealLiquid", |
---|
148 | VapourModel = "PR" |
---|
149 | ); |
---|
150 | NComp as Integer; |
---|
151 | |
---|
152 | SET |
---|
153 | NComp = PP.NumberOfComponents; |
---|
154 | nu = [-1, -1, 1, 1]; |
---|
155 | |
---|
156 | SPECIFY |
---|
157 | T = 1100 * 'K'; |
---|
158 | P = 1 * 'bar'; |
---|
159 | n0 = [1, 1, 0, 0] * 'mol'; |
---|
160 | |
---|
161 | # Expected results: |
---|
162 | # advance = 0.41; |
---|
163 | |
---|
164 | OPTIONS |
---|
165 | Dynamic = false; |
---|
166 | end |
---|
167 | |
---|
168 | |
---|
169 | # Water-gas-shift T = 1100 K, P = 10 bar |
---|
170 | FlowSheet gibbs_reactor_simple_sample4 as gibbs_reactor_simple |
---|
171 | PARAMETERS |
---|
172 | PP as Plugin(Brief="Physical Properties", |
---|
173 | Type="PP", |
---|
174 | Components = ["carbon monoxide", "water", "carbon dioxide", "hydrogen"], |
---|
175 | LiquidModel = "IdealLiquid", |
---|
176 | VapourModel = "PR" |
---|
177 | ); |
---|
178 | NComp as Integer; |
---|
179 | |
---|
180 | SET |
---|
181 | NComp = PP.NumberOfComponents; |
---|
182 | nu = [-1, -1, 1, 1]; |
---|
183 | |
---|
184 | SPECIFY |
---|
185 | T = 1100 * 'K'; |
---|
186 | P = 1 * 'bar'; |
---|
187 | n0 = [1, 1, 0, 0] * 'mol'; |
---|
188 | |
---|
189 | # Expected results: |
---|
190 | # advance = 0.41; |
---|
191 | |
---|
192 | OPTIONS |
---|
193 | Dynamic = false; |
---|
194 | end |
---|
195 | |
---|
196 | |
---|
197 | # Water-gas-shift T = 1100 K, P = 1 bar excess of water |
---|
198 | FlowSheet gibbs_reactor_simple_sample5 as gibbs_reactor_simple |
---|
199 | PARAMETERS |
---|
200 | PP as Plugin(Brief="Physical Properties", |
---|
201 | Type="PP", |
---|
202 | Components = ["carbon monoxide", "water", "carbon dioxide", "hydrogen"], |
---|
203 | LiquidModel = "IdealLiquid", |
---|
204 | VapourModel = "PR" |
---|
205 | ); |
---|
206 | NComp as Integer; |
---|
207 | |
---|
208 | SET |
---|
209 | NComp = PP.NumberOfComponents; |
---|
210 | nu = [-1, -1, 1, 1]; |
---|
211 | |
---|
212 | SPECIFY |
---|
213 | T = 1100 * 'K'; |
---|
214 | P = 1 * 'bar'; |
---|
215 | n0 = [1, 2, 0, 0] * 'mol'; |
---|
216 | |
---|
217 | # Expected results: |
---|
218 | # advance = 0.56; |
---|
219 | |
---|
220 | OPTIONS |
---|
221 | Dynamic = false; |
---|
222 | end |
---|
223 | |
---|
224 | # Ammonia synthesis from nitrogen and hydrogen T = 500 degC, P = 1 bar |
---|
225 | FlowSheet gibbs_reactor_simple_sample6 as gibbs_reactor_simple |
---|
226 | PARAMETERS |
---|
227 | PP as Plugin(Brief="Physical Properties", |
---|
228 | Type="PP", |
---|
229 | Components = ["nitrogen", "hydrogen", "ammonia"], |
---|
230 | LiquidModel = "IdealLiquid", |
---|
231 | VapourModel = "PR" |
---|
232 | ); |
---|
233 | NComp as Integer; |
---|
234 | |
---|
235 | SET |
---|
236 | NComp = PP.NumberOfComponents; |
---|
237 | nu = [-1, -1, 2]; |
---|
238 | |
---|
239 | SPECIFY |
---|
240 | T = (500 + 273.15) * 'K'; |
---|
241 | P = 1 * 'bar'; |
---|
242 | n0 = [1, 3, 0] * 'mol'; |
---|
243 | |
---|
244 | # Expected results: |
---|
245 | # K = 6e-5; |
---|
246 | |
---|
247 | OPTIONS |
---|
248 | Dynamic = false; |
---|
249 | end |
---|
250 | |
---|
251 | # Ammonia synthesis from nitrogen and hydrogen T = 500 degC, P = 300 bar |
---|
252 | FlowSheet gibbs_reactor_simple_sample7 as gibbs_reactor_simple |
---|
253 | PARAMETERS |
---|
254 | PP as Plugin(Brief="Physical Properties", |
---|
255 | Type="PP", |
---|
256 | Components = ["nitrogen", "hydrogen", "ammonia"], |
---|
257 | LiquidModel = "IdealLiquid", |
---|
258 | VapourModel = "PR" |
---|
259 | ); |
---|
260 | NComp as Integer; |
---|
261 | |
---|
262 | SET |
---|
263 | NComp = PP.NumberOfComponents; |
---|
264 | nu = [-1, -3, 2]; |
---|
265 | |
---|
266 | SPECIFY |
---|
267 | T = (500 + 273.15) * 'K'; |
---|
268 | P = 300 * 'bar'; |
---|
269 | n0 = [1, 3, 0] * 'mol'; |
---|
270 | |
---|
271 | # Expected results: |
---|
272 | # advance = 0.54; |
---|
273 | |
---|
274 | OPTIONS |
---|
275 | Dynamic = false; |
---|
276 | end |
---|