1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *-------------------------------------------------------------------- |
---|
16 | * Sample file for column cost model |
---|
17 | *-------------------------------------------------------------------- |
---|
18 | * |
---|
19 | * This sample file needs VRTherm DEMO(www.vrtech.com.br) to run |
---|
20 | * SectionColumn_Test and needs VRTherm full to run the distillation |
---|
21 | * column flowsheet. |
---|
22 | * |
---|
23 | *---------------------------------------------------------------------- |
---|
24 | * Author: Núbia do Carmo Ferreira |
---|
25 | * $Id: sample_column.mso 247 2007-04-24 13:44:18Z rafael $ |
---|
26 | *--------------------------------------------------------------------*# |
---|
27 | |
---|
28 | using "costs/column_cost"; |
---|
29 | |
---|
30 | FlowSheet sample_Distillation_kettle_cond_cost |
---|
31 | |
---|
32 | PARAMETERS |
---|
33 | PP as Plugin(Brief="Physical Properties", |
---|
34 | Type="PP", |
---|
35 | Components = [ "isobutane", "n-pentane", "propylene", |
---|
36 | "benzene", "isobutene" ], |
---|
37 | LiquidModel = "PR", |
---|
38 | VapourModel = "PR" |
---|
39 | ); |
---|
40 | NComp as Integer; |
---|
41 | |
---|
42 | |
---|
43 | SET |
---|
44 | NComp = PP.NumberOfComponents; |
---|
45 | |
---|
46 | DEVICES |
---|
47 | col as Distillation_kettle_cond_cost; |
---|
48 | feed as source; |
---|
49 | zero as stream; |
---|
50 | Qc as energy_source; |
---|
51 | Qr as energy_source; |
---|
52 | |
---|
53 | CONNECTIONS |
---|
54 | feed.Outlet to col.trays(5).Inlet; |
---|
55 | zero to col.reb.Inlet; |
---|
56 | zero to col.trays([1:4]).Inlet; |
---|
57 | zero to col.trays([6:col.NTrays]).Inlet; |
---|
58 | Qc.OutletQ to col.cond.InletQ; |
---|
59 | Qr.OutletQ to col.reb.InletQ; |
---|
60 | |
---|
61 | SPECIFY |
---|
62 | feed.F = 113.4 * 'kmol/h'; |
---|
63 | feed.T = 291 * 'K'; |
---|
64 | feed.P = 168.3 * 'kPa'; |
---|
65 | feed.Composition = 1/NComp; |
---|
66 | |
---|
67 | zero.F = 0 * 'kmol/h'; |
---|
68 | zero.T = 300 * 'K'; |
---|
69 | zero.P = 1 * 'atm'; |
---|
70 | zero.z = 1/NComp; |
---|
71 | zero.v = 0; |
---|
72 | zero.h = 0 * 'J/mol'; |
---|
73 | |
---|
74 | col.sptop.Outlet2.F = 85 * 'kmol/h'; |
---|
75 | col.reb.OutletL.F = 28.4 * 'kmol/h'; |
---|
76 | col.sptop.frac = 0.444445; |
---|
77 | col.cond.OutletV.F = 0 * 'kmol/h'; |
---|
78 | Qr.OutletQ = 3.7743e6 * 'kJ/h'; |
---|
79 | Qc.OutletQ = -3.71e6 * 'kJ/h'; |
---|
80 | col.pump1.dP = 16 * 'kPa'; |
---|
81 | col.trays.Emv = 1; |
---|
82 | col.alfaTopo = 2; |
---|
83 | |
---|
84 | SET |
---|
85 | col.NTrays = 8; |
---|
86 | col.cond.V = 2 * 'm^3'; |
---|
87 | col.cond.Across = 1 * 'm^2'; |
---|
88 | col.trays.V = 4 * 'ft^3'; |
---|
89 | col.trays.Ah = 0.394 * 'ft^2'; |
---|
90 | col.trays.lw = 20.94 * 'in'; |
---|
91 | col.trays.hw = 0.125 * 'ft'; |
---|
92 | col.trays.Q = 0 * 'kW'; |
---|
93 | col.trays.beta = 0.6; |
---|
94 | col.trays.alfa = 4; |
---|
95 | col.trays.Ap = 3.94 * 'ft^2'; |
---|
96 | col.reb.V = 2 * 'm^3'; |
---|
97 | col.reb.Across = 1 * 'm^2'; |
---|
98 | |
---|
99 | #cost |
---|
100 | col.Material = "Stainless steel 316"; |
---|
101 | col.Tray_Material = "Stainless steel 304"; |
---|
102 | col.Tray_Type = "Valve"; |
---|
103 | col.Di = 0.9 * 'm'; |
---|
104 | col.Lt = 17.5 * 'm'; |
---|
105 | col.Tb = 0.01250 * 'm'; |
---|
106 | col.Tp = 0.01349 * 'm'; |
---|
107 | col.D = 2.4 * 'm'; |
---|
108 | col.dens_mass_material = 8000 * 'kg/m^3'; |
---|
109 | |
---|
110 | col.Cost(1,:) = [6.950,0.1808,0.02468,0.01580]; |
---|
111 | col.Cost(2,:) = [834.86,0,0,0]; |
---|
112 | col.Cost(3,:) = [6.448,0.21887,0.02297,0]; |
---|
113 | col.Cost(4,:) = [1017.0,0,0,0]; |
---|
114 | col.Cost(5,:) = [1.7,0,0,0]; #For "Stainless steel 304" - tray material |
---|
115 | col.Cost(6,:) = [278.38,0.1739,0,0]; |
---|
116 | col.Cost(7,:) = [1.189,0.1894,0,0]; |
---|
117 | col.Cost(8,:) = [1.401,0.2376,0,0]; |
---|
118 | col.Cost(9,:) = [1.525,0.2585,0,0]; |
---|
119 | col.Cost(10,:) = [2.306,0.3674,0,0]; |
---|
120 | col.Cost(11,:) = [2.25,1.0414,0,0]; |
---|
121 | col.Cost(12,:) = [1,0,0,0]; #For valve trays |
---|
122 | |
---|
123 | INITIAL |
---|
124 | # condenser |
---|
125 | col.cond.OutletL.T = 260 *'K'; |
---|
126 | col.cond.Level = 1 * 'm'; |
---|
127 | col.cond.OutletL.z([1:4]) = [0.65, 0.05, 0.01, 0.01]; |
---|
128 | |
---|
129 | # reboiler |
---|
130 | col.reb.OutletL.T = 300 *'K'; |
---|
131 | col.reb.Level = 1 * 'm'; |
---|
132 | col.reb.OutletL.z([1:4]) = [0.1, 0.7, 0.01, 0.01]; |
---|
133 | |
---|
134 | # column trays |
---|
135 | col.trays.OutletL.T = [290:(300-290)/(col.NTrays-1):300] * 'K'; |
---|
136 | col.trays.Level = 1.2 * col.trays.hw; |
---|
137 | col.trays.OutletL.z([1:4]) = [0.5, 0.05, 0.01, 0.01]; |
---|
138 | |
---|
139 | OPTIONS |
---|
140 | TimeStep = 0.1; |
---|
141 | TimeEnd = 50; |
---|
142 | #Dynamic = false; |
---|
143 | end |
---|