1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *-------------------------------------------------------------------- |
---|
16 | * Models to simulate a power plant. |
---|
17 | *-------------------------------------------------------------------- |
---|
18 | * Author: Argimiro R. Secchi |
---|
19 | * $Id: power_plant.mso 195 2007-03-07 20:30:12Z arge $ |
---|
20 | *-------------------------------------------------------------------*# |
---|
21 | |
---|
22 | # Declaracao de tipos |
---|
23 | CalorEspecifico as Real(Default=1e-3,Lower=0,Upper=1,Unit='MJ/kg/K'); |
---|
24 | CoefGlobal_area as Real(Default=10,Lower=0,Upper=1e3,Unit='1000*kW/K'); |
---|
25 | Dif_Pres as Real(Default=0,Lower=-50,Upper=50,Unit='MPa'); |
---|
26 | Dif_Temp as Real(Default=0,Lower=-300,Upper=300,Unit='K'); |
---|
27 | Eficiencia as Real(Default=0.75,Lower=0,Upper=1); |
---|
28 | EnergiaInterna as Real(Default=2,Lower=0,Upper=10,Unit='MJ/kg'); |
---|
29 | Entalpia as Real(Default=3,Lower=1e-3,Upper=7,Unit='MJ/kg'); |
---|
30 | Entropia as Real(Default=5,Lower=1e-3,Upper=8,Unit='kJ/kg/K'); |
---|
31 | Fracao as Real(Default=0.5,Lower=0,Upper=1); |
---|
32 | Potencia as Real(Default=10,Lower=0,Upper=500,Unit='1000*kW'); |
---|
33 | Pressao as Real(Default=1,Lower=5e-4,Upper=20,Unit='MPa'); |
---|
34 | MassaEspecifica as Real(Default=1e3,Lower=1e-3,Upper=1e6,Unit='kg/m^3'); |
---|
35 | NoType as Real(Default=1,Lower=-2,Upper=2); |
---|
36 | Temperatura as Real(Default=600,Lower=273.16,Upper=900,Unit='K'); |
---|
37 | VazaoMassica as Real(Default=50,Lower=0,Upper=1e4,Unit='kg/s'); |
---|
38 | VolumeEspecifico as Real(Default=1e-3,Lower=1e-6,Upper=500,Unit='m^3/kg'); |
---|
39 | |
---|
40 | Model Corrente |
---|
41 | #Brief="Corrente para conexão entre os equipamentos" |
---|
42 | VARIABLES |
---|
43 | F as VazaoMassica; |
---|
44 | P as Pressao; |
---|
45 | T as Temperatura; |
---|
46 | S as Entropia; |
---|
47 | H as Entalpia; |
---|
48 | end |
---|
49 | |
---|
50 | # Modelo de turbina sem sangria |
---|
51 | Model Turbina |
---|
52 | PARAMETERS |
---|
53 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
54 | |
---|
55 | VARIABLES |
---|
56 | H_IS as Entalpia; |
---|
57 | EF_T as Eficiencia (Brief="Eficiencia da turbina"); |
---|
58 | POT_TURB as Potencia (Brief="Potencia da turbina"); |
---|
59 | in Fin as Corrente (Symbol="_{in}"); |
---|
60 | out Fout as Corrente (Symbol="_{out}"); |
---|
61 | |
---|
62 | EQUATIONS |
---|
63 | |
---|
64 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
65 | |
---|
66 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
67 | |
---|
68 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
69 | |
---|
70 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
71 | |
---|
72 | Fout.F = Fin.F; |
---|
73 | end |
---|
74 | |
---|
75 | # Modelo de turbina com sangria |
---|
76 | Model Turbina_sangra |
---|
77 | PARAMETERS |
---|
78 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
79 | |
---|
80 | VARIABLES |
---|
81 | H_IS as Entalpia; |
---|
82 | EF_T as Eficiencia(Brief="Eficiencia da turbina"); |
---|
83 | POT_TURB as Potencia(Brief="Potencia da turbina"); |
---|
84 | y as Fracao(Brief="Fracao massica da sangria"); |
---|
85 | in Fin as Corrente (Symbol="_{in}"); |
---|
86 | out Fout as Corrente (Symbol="_{out}"); |
---|
87 | out Fouts as Corrente (Symbol="_{outx}");#(Brief="Sangria da Turbina") |
---|
88 | |
---|
89 | EQUATIONS |
---|
90 | |
---|
91 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
92 | |
---|
93 | Fout.H = (H_IS - Fin.H) * EF_T + Fin.H; |
---|
94 | |
---|
95 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
96 | |
---|
97 | Fin.F * (Fin.H - Fout.H) = POT_TURB; |
---|
98 | |
---|
99 | Fouts.F = Fin.F * y; |
---|
100 | Fout.F = Fin.F - Fouts.F; |
---|
101 | Fouts.P = Fout.P; |
---|
102 | Fouts.T = Fout.T; |
---|
103 | Fouts.S = Fout.S; |
---|
104 | Fouts.H = Fout.H; |
---|
105 | end |
---|
106 | |
---|
107 | # Modelo de condensador com uma alimentacao |
---|
108 | Model Condensador |
---|
109 | PARAMETERS |
---|
110 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
111 | |
---|
112 | VARIABLES |
---|
113 | Q_COND as Potencia (Brief="Taxa de calor removido"); |
---|
114 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
115 | in Fin as Corrente (Symbol="_{in}"); |
---|
116 | out Fout as Corrente (Symbol="_{out}"); |
---|
117 | |
---|
118 | EQUATIONS |
---|
119 | |
---|
120 | Fout.P = Fin.P; |
---|
121 | Fout.T = propterm.Tsat(Fout.P) - G_S; |
---|
122 | |
---|
123 | [Fout.S,Fout.H] = propterm.propPTl(Fout.P,Fout.T); |
---|
124 | |
---|
125 | Q_COND = Fin.F * (Fin.H - Fout.H); |
---|
126 | Fout.F = Fin.F; |
---|
127 | end |
---|
128 | |
---|
129 | # Modelo de condensador com duas alimentacoes |
---|
130 | Model Condensador_2alim |
---|
131 | PARAMETERS |
---|
132 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
133 | |
---|
134 | VARIABLES |
---|
135 | Q_COND as Potencia (Brief="Taxa de calor removido"); |
---|
136 | G_S as Dif_Temp (Brief="Grau de sub-resfriamento"); |
---|
137 | in Fin1 as Corrente (Brief="Corrente com pressao igual a saida", Symbol="_{in1}"); |
---|
138 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
139 | out Fout as Corrente (Symbol="_{out}"); |
---|
140 | |
---|
141 | EQUATIONS |
---|
142 | |
---|
143 | Fout.P = Fin1.P; |
---|
144 | Fout.T = propterm.Tsat(Fout.P) - G_S; |
---|
145 | |
---|
146 | [Fout.S,Fout.H] = propterm.propPTl(Fout.P,Fout.T); |
---|
147 | |
---|
148 | Fout.F = Fin1.F + Fin2.F; |
---|
149 | Q_COND = Fin1.F * Fin1.H + Fin2.F * Fin2.H - Fout.F * Fout.H; |
---|
150 | end |
---|
151 | |
---|
152 | # Modelo de tanque de armazenamento com tres alimentacoes |
---|
153 | Model Tanque |
---|
154 | PARAMETERS |
---|
155 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
156 | |
---|
157 | VARIABLES |
---|
158 | in Fin1 as Corrente (Symbol="_{in1}"); |
---|
159 | in Fin2 as Corrente (Symbol="_{in2}"); |
---|
160 | in Fin3 as Corrente (Symbol="_{in3}"); |
---|
161 | out Fout as Corrente (Symbol="_{out}"); |
---|
162 | |
---|
163 | EQUATIONS |
---|
164 | |
---|
165 | Fout.F = Fin1.F + Fin2.F + Fin3.F; |
---|
166 | Fout.F * Fout.H = Fin1.F * Fin1.H + Fin2.F * Fin2.H + Fin3.F * Fin3.H; |
---|
167 | |
---|
168 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
169 | end |
---|
170 | |
---|
171 | # Modelo de trocador de calor, dada a carga termica |
---|
172 | Model Trocador |
---|
173 | PARAMETERS |
---|
174 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
175 | |
---|
176 | VARIABLES |
---|
177 | Q as Potencia; |
---|
178 | DP as Dif_Pres; |
---|
179 | in Fin as Corrente (Symbol="_{in}"); |
---|
180 | out Fout as Corrente (Symbol="_{out}"); |
---|
181 | |
---|
182 | EQUATIONS |
---|
183 | |
---|
184 | Fout.F = Fin.F; |
---|
185 | Fout.P = Fin.P - DP; |
---|
186 | Fout.F * (Fout.H - Fin.H) = Q; |
---|
187 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
188 | end |
---|
189 | |
---|
190 | # Modelo de torre de refrigeracao |
---|
191 | Model Torre |
---|
192 | PARAMETERS |
---|
193 | cpa as CalorEspecifico; |
---|
194 | |
---|
195 | VARIABLES |
---|
196 | F as VazaoMassica; |
---|
197 | Q as Potencia; |
---|
198 | DTh as Dif_Temp; |
---|
199 | DTc as Dif_Temp; |
---|
200 | DTar as Dif_Temp; # grau de aquecimento do ar |
---|
201 | Th as Temperatura; |
---|
202 | Tc as Temperatura; |
---|
203 | Tar_c as Temperatura; |
---|
204 | Tar_h as Temperatura; |
---|
205 | Uat as CoefGlobal_area; |
---|
206 | |
---|
207 | EQUATIONS |
---|
208 | |
---|
209 | DTar = Tar_h - Tar_c; |
---|
210 | DTh = Th - Tar_h; |
---|
211 | DTc = Tc - Tar_c; |
---|
212 | F * cpa * (Th - Tc) = Q; |
---|
213 | Uat * (DTh - DTc) = Q * ln(abs(DTh/DTc)); |
---|
214 | # Uat * 0.5 * (DTh + DTc) = Q; |
---|
215 | end |
---|
216 | |
---|
217 | # Modelo de bomba |
---|
218 | Model Bomba |
---|
219 | PARAMETERS |
---|
220 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
221 | v_esp as VolumeEspecifico; |
---|
222 | |
---|
223 | VARIABLES |
---|
224 | H_IS as Entalpia; |
---|
225 | POT_BMB as Potencia(Brief="Potencia do motor da bomba"); |
---|
226 | POT_EF as Potencia(Brief="Potencia injetada pela bomba"); |
---|
227 | EF_B as Eficiencia(Brief="Eficiencia da bomba"); |
---|
228 | in Fin as Corrente (Symbol="_{in}"); |
---|
229 | out Fout as Corrente (Symbol="_{out}"); |
---|
230 | |
---|
231 | EQUATIONS |
---|
232 | |
---|
233 | H_IS = propterm.propPS(Fout.P,Fin.S); |
---|
234 | |
---|
235 | (Fout.H - Fin.H) * EF_B = H_IS - Fin.H; |
---|
236 | # (Fout.H - Fin.H) * Fin.F = POT_EF; # Forma alternativa |
---|
237 | |
---|
238 | [Fout.S,Fout.T] = propterm.propPH(Fout.P,Fout.H); |
---|
239 | |
---|
240 | POT_EF = POT_BMB * EF_B; |
---|
241 | POT_EF = Fin.F * v_esp * (Fout.P - Fin.P); |
---|
242 | Fout.F = Fin.F; |
---|
243 | end |
---|
244 | |
---|
245 | # Modelo de gerador de vapor |
---|
246 | Model Gerador_Vapor |
---|
247 | PARAMETERS |
---|
248 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
249 | |
---|
250 | VARIABLES |
---|
251 | Q_GV as Potencia (Brief="Taxa de calor gerado na caldeira"); |
---|
252 | EF_GV as Eficiencia (Brief="Eficiencia do gerador de vapor"); |
---|
253 | Qra as Potencia (Brief="Taxa de calor nos reaquecedores"); |
---|
254 | Qsa as Potencia (Brief="Taxa de calor nos superaquecedores"); |
---|
255 | Qca as Potencia (Brief="Taxa de calor no evaporador"); |
---|
256 | Qec as Potencia (Brief="Taxa de calor nos economizadores"); |
---|
257 | in Fin_a as Corrente (Brief="Agua de alimentacao", Symbol="_{in_a}"); |
---|
258 | in Fin_ra as Corrente (Brief="Vapor a ser Reaquecido", Symbol="_{in_ra}"); |
---|
259 | out Fout_sa as Corrente (Brief="Vapor Superaquecido", Symbol="_{out_sa}"); |
---|
260 | out Fout_ra as Corrente (Brief="Vapor Reaquecido", Symbol="_{out_ra}"); |
---|
261 | Fvap as Corrente (Brief="Evaporador"); |
---|
262 | Feco as Corrente (Brief="Economizadores"); |
---|
263 | |
---|
264 | EQUATIONS |
---|
265 | |
---|
266 | # [Fin_a.S,Fin_a.H] = propterm.propPTl(Fin_a.P,Fin_a.T); # Reduntante no ciclo fechado |
---|
267 | |
---|
268 | "Economizadores ECO1 + ECO1" |
---|
269 | # Feco.F = Fin_a.F; # Reduntante no ciclo fechado |
---|
270 | [Feco.S,Feco.H] = propterm.propPTv(Feco.P,Feco.T); |
---|
271 | Qec = Feco.F * (Feco.H - Fin_a.H); |
---|
272 | |
---|
273 | "Evaporador - Camisa dagua" |
---|
274 | Fvap.F = Feco.F; |
---|
275 | [Fvap.S,Fvap.H] = propterm.propPTv(Fvap.P,Fvap.T); |
---|
276 | Qca = Fvap.F * (Fvap.H - Feco.H); |
---|
277 | |
---|
278 | "Superaquecedores BT + AT" |
---|
279 | Fout_sa.F = Fvap.F; |
---|
280 | [Fout_sa.S,Fout_sa.H] = propterm.propPTv(Fout_sa.P,Fout_sa.T); |
---|
281 | Qsa = Fout_sa.F * (Fout_sa.H - Fvap.H); |
---|
282 | |
---|
283 | "Reaquecedores BT + AT" |
---|
284 | Fout_ra.F = Fin_ra.F; |
---|
285 | [Fout_ra.S,Fout_ra.H] = propterm.propPTv(Fout_ra.P,Fout_ra.T); |
---|
286 | Qra = Fout_ra.F * (Fout_ra.H - Fin_ra.H); |
---|
287 | |
---|
288 | "Caldeira" |
---|
289 | Q_GV * EF_GV = Qec + Qca + Qsa + Qra; |
---|
290 | end |
---|
291 | |
---|
292 | # Modelo simplificado gerador de vapor |
---|
293 | Model Gerador_Vapor_Simples |
---|
294 | PARAMETERS |
---|
295 | outer propterm as Plugin(Brief="Steam tables", Type="water"); |
---|
296 | |
---|
297 | VARIABLES |
---|
298 | Q_GV as Potencia; |
---|
299 | EF_GV as Eficiencia; |
---|
300 | in Fin as Corrente (Symbol="_{in}"); |
---|
301 | out Fout as Corrente (Symbol="_{out}"); |
---|
302 | |
---|
303 | EQUATIONS |
---|
304 | |
---|
305 | Fout.P = Fin.P; |
---|
306 | |
---|
307 | [Fout.S,Fout.H] = propterm.propPTv(Fout.P,Fout.T); |
---|
308 | |
---|
309 | Q_GV * EF_GV = Fin.F * (Fout.H - Fin.H); |
---|
310 | # Fout.F = Fin.F; |
---|
311 | end |
---|
312 | |
---|
313 | # Modelo de gerador eletrico |
---|
314 | Model Gerador_Eletrico |
---|
315 | PARAMETERS |
---|
316 | EF_GE as Eficiencia(Brief="Eficiencia do gerador eletrico"); |
---|
317 | |
---|
318 | VARIABLES |
---|
319 | POT_GE as Potencia(Brief="Potencia do gerador eletrico"); |
---|
320 | end |
---|
321 | |
---|
322 | # Modelo de separador de corrente |
---|
323 | Model Splitter |
---|
324 | VARIABLES |
---|
325 | y as Fracao(Brief="Fracao de massa para a segunda corrente"); |
---|
326 | in Fin as Corrente (Symbol="_{in}"); |
---|
327 | out Fout as Corrente (Symbol="_{out}"); |
---|
328 | out Fouts as Corrente(Brief="Segunda corrente", Symbol="_{outx}"); |
---|
329 | |
---|
330 | EQUATIONS |
---|
331 | |
---|
332 | Fout.P = Fin.P; |
---|
333 | Fout.T = Fin.T; |
---|
334 | Fout.S = Fin.S; |
---|
335 | Fout.H = Fin.H; |
---|
336 | |
---|
337 | Fouts.P = Fin.P; |
---|
338 | Fouts.T = Fin.T; |
---|
339 | Fouts.S = Fin.S; |
---|
340 | Fouts.H = Fin.H; |
---|
341 | |
---|
342 | Fouts.F = Fin.F * y; |
---|
343 | Fout.F = Fin.F - Fouts.F; |
---|
344 | end |
---|