[79] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
[1] | 3 | * |
---|
[79] | 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *-------------------------------------------------------------------- |
---|
| 16 | * Model of basic streams |
---|
[1] | 17 | *---------------------------------------------------------------------- |
---|
[79] | 18 | * Author: Paula B. Staudt and Rafael de P. Soares |
---|
[1] | 19 | * $Id: streams.mso 577 2008-07-25 20:48:22Z bicca $ |
---|
| 20 | *---------------------------------------------------------------------*# |
---|
| 21 | |
---|
| 22 | using "types"; |
---|
| 23 | |
---|
| 24 | Model stream |
---|
[117] | 25 | ATTRIBUTES |
---|
| 26 | Pallete = false; |
---|
| 27 | Brief = "General Material Stream"; |
---|
[123] | 28 | Info = |
---|
[117] | 29 | "This is the basic building block for the EML models. |
---|
| 30 | Every model should have input and output streams derived |
---|
| 31 | from this model."; |
---|
| 32 | |
---|
[1] | 33 | PARAMETERS |
---|
[117] | 34 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
[1] | 35 | |
---|
| 36 | VARIABLES |
---|
[346] | 37 | F as flow_mol (Brief = "Stream Molar Flow Rate"); |
---|
| 38 | T as temperature (Brief = "Stream Temperature"); |
---|
| 39 | P as pressure (Brief = "Stream Pressure"); |
---|
| 40 | h as enth_mol (Brief = "Stream Enthalpy"); |
---|
| 41 | v as fraction (Brief = "Vapourization fraction"); |
---|
[523] | 42 | z(NComp) as fraction (Brief = "Stream Molar Fraction"); |
---|
[1] | 43 | end |
---|
| 44 | |
---|
[117] | 45 | Model liquid_stream as stream |
---|
| 46 | ATTRIBUTES |
---|
| 47 | Pallete = false; |
---|
| 48 | Brief = "Liquid Material Stream"; |
---|
[123] | 49 | Info = |
---|
[117] | 50 | "Model for liquid material streams. |
---|
| 51 | This model should be used only when the phase of the stream |
---|
| 52 | is known ''a priori''."; |
---|
| 53 | |
---|
[1] | 54 | PARAMETERS |
---|
[117] | 55 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[1] | 56 | |
---|
| 57 | EQUATIONS |
---|
[117] | 58 | "Liquid Enthalpy" |
---|
| 59 | h = PP.LiquidEnthalpy(T, P, z); |
---|
| 60 | "Liquid stream" |
---|
| 61 | v = 0; |
---|
[1] | 62 | end |
---|
| 63 | |
---|
[117] | 64 | Model vapour_stream as stream |
---|
| 65 | ATTRIBUTES |
---|
| 66 | Pallete = false; |
---|
| 67 | Brief = "Vapour Material Stream"; |
---|
[123] | 68 | Info = |
---|
[117] | 69 | "Model for vapour material streams. |
---|
| 70 | This model should be used only when the phase of the stream |
---|
| 71 | is known ''a priori''."; |
---|
| 72 | |
---|
[1] | 73 | PARAMETERS |
---|
[117] | 74 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
[1] | 75 | |
---|
| 76 | EQUATIONS |
---|
[117] | 77 | "Vapour Enthalpy" |
---|
| 78 | h = PP.VapourEnthalpy(T, P, z); |
---|
| 79 | "Vapour stream" |
---|
| 80 | v = 1; |
---|
[1] | 81 | end |
---|
| 82 | |
---|
[125] | 83 | Model streamPH as stream |
---|
[298] | 84 | ATTRIBUTES |
---|
| 85 | Brief = "Stream with built-in flash calculation"; |
---|
| 86 | Info = " |
---|
| 87 | This model should be used when the vaporization fraction |
---|
| 88 | is unknown. |
---|
| 89 | |
---|
| 90 | The built-in flash calculation will determine the stream |
---|
| 91 | state as a function of the overall composition '''z''', the |
---|
| 92 | pressure '''P''' and the enthalpy '''h'''. |
---|
| 93 | |
---|
| 94 | Additionally, the liquid composition '''x''' and the vapor |
---|
| 95 | composition '''y''' are calculated. |
---|
| 96 | "; |
---|
| 97 | Pallete = false; |
---|
| 98 | |
---|
[125] | 99 | PARAMETERS |
---|
| 100 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
| 101 | |
---|
| 102 | VARIABLES |
---|
[551] | 103 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 104 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
[346] | 105 | |
---|
[125] | 106 | EQUATIONS |
---|
| 107 | "Flash Calculation" |
---|
| 108 | [v, x, y] = PP.FlashPH(P, h, z); |
---|
[346] | 109 | |
---|
[125] | 110 | "Enthalpy" |
---|
| 111 | h = (1-v)*PP.LiquidEnthalpy(T, P, x) + |
---|
| 112 | v*PP.VapourEnthalpy(T, P, y); |
---|
[346] | 113 | |
---|
[125] | 114 | end |
---|
| 115 | |
---|
[562] | 116 | Model streamPHS as streamPH |
---|
| 117 | ATTRIBUTES |
---|
| 118 | Brief = "Stream with built-in flash calculation"; |
---|
| 119 | Info = " |
---|
| 120 | This model should be used when the vaporization fraction |
---|
| 121 | is unknown. |
---|
| 122 | |
---|
| 123 | The built-in flash calculation will determine the stream |
---|
| 124 | state as a function of the overall composition '''z''', the |
---|
| 125 | pressure '''P''' and the enthalpy '''h'''. |
---|
| 126 | |
---|
| 127 | Additionally, the liquid composition '''x''' and the vapor |
---|
| 128 | composition '''y''' are calculated. |
---|
| 129 | "; |
---|
| 130 | Pallete = false; |
---|
| 131 | |
---|
| 132 | PARAMETERS |
---|
| 133 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
| 134 | |
---|
| 135 | VARIABLES |
---|
| 136 | s as entr_mol (Brief = "Stream Entropy"); |
---|
| 137 | |
---|
| 138 | EQUATIONS |
---|
| 139 | |
---|
| 140 | "Entropy" |
---|
| 141 | s = (1-v)*PP.LiquidEntropy(T, P, x) + v*PP.VapourEntropy(T, P, y); |
---|
| 142 | |
---|
| 143 | end |
---|
| 144 | |
---|
[117] | 145 | Model source |
---|
| 146 | ATTRIBUTES |
---|
[321] | 147 | Pallete = true; |
---|
[310] | 148 | Icon = "icon/Source"; |
---|
[290] | 149 | Brief = "Material stream source"; |
---|
| 150 | Info = " |
---|
[117] | 151 | This model should be used for boundary streams. |
---|
| 152 | Usually these streams are known and come from another process |
---|
[290] | 153 | units. |
---|
[117] | 154 | |
---|
[290] | 155 | The user should specify: |
---|
| 156 | * Total molar (mass or volumetric) flow |
---|
| 157 | * Temperature |
---|
| 158 | * Pressure |
---|
| 159 | * Molar (mass or volumetric) composition |
---|
| 160 | |
---|
| 161 | No matter the specification set, the model will calculate some |
---|
| 162 | additional properties: |
---|
| 163 | * Mass density |
---|
| 164 | * Mass flow |
---|
| 165 | * Mass compostions |
---|
| 166 | * Specific volume |
---|
| 167 | * Vapour fraction |
---|
| 168 | * Volumetric flow |
---|
| 169 | * Liquid and Vapour compositions |
---|
| 170 | "; |
---|
| 171 | |
---|
[117] | 172 | PARAMETERS |
---|
[147] | 173 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 174 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
[297] | 175 | M(NComp) as molweight (Brief = "Component Mol Weight"); |
---|
| 176 | rhoModel as Switcher (Brief = "Density model", Valid = ["volume", "correlation"], Default="volume"); |
---|
[117] | 177 | |
---|
[147] | 178 | SET |
---|
| 179 | |
---|
| 180 | M = PP.MolecularWeight(); |
---|
| 181 | |
---|
[117] | 182 | VARIABLES |
---|
[352] | 183 | out Outlet as stream (Brief = "Outlet stream", PosX=1, PosY=0.5256, Symbol="_{out}"); |
---|
[551] | 184 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 185 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
[346] | 186 | hl as enth_mol (Brief = "Liquid Enthalpy"); |
---|
| 187 | hv as enth_mol (Brief = "Vapour Enthalpy"); |
---|
| 188 | s as entr_mol (Brief = "Stream Entropy"); |
---|
| 189 | sl as entr_mol (Brief = "Liquid Entropy"); |
---|
| 190 | sv as entr_mol (Brief = "Vapour Entropy"); |
---|
[297] | 191 | zmass(NComp) as fraction (Brief = "Mass Fraction"); |
---|
| 192 | Mw as molweight (Brief = "Average Mol Weight"); |
---|
| 193 | vm as volume_mol (Brief = "Molar Volume"); |
---|
| 194 | rho as dens_mass (Brief = "Stream Mass Density"); |
---|
| 195 | rhom as dens_mol (Brief = "Stream Molar Density"); |
---|
| 196 | Fw as flow_mass (Brief = "Stream Mass Flow"); |
---|
| 197 | Fvol as flow_vol (Brief = "Volumetric Flow"); |
---|
[501] | 198 | T_Cdeg as temperature (Brief = "Temperature in °C", Lower=-200); |
---|
[117] | 199 | |
---|
| 200 | EQUATIONS |
---|
| 201 | "Flash Calculation" |
---|
| 202 | [Outlet.v, x, y] = PP.Flash(Outlet.T, Outlet.P, Outlet.z); |
---|
[147] | 203 | |
---|
[117] | 204 | "Overall Enthalpy" |
---|
[346] | 205 | Outlet.h = (1-Outlet.v)*hl + Outlet.v*hv; |
---|
| 206 | |
---|
| 207 | "Liquid Enthalpy" |
---|
[123] | 208 | hl = PP.LiquidEnthalpy(Outlet.T, Outlet.P, x); |
---|
[346] | 209 | |
---|
| 210 | "Vapour Enthalpy" |
---|
[123] | 211 | hv = PP.VapourEnthalpy(Outlet.T, Outlet.P, y); |
---|
[346] | 212 | |
---|
| 213 | "Overall Entropy" |
---|
| 214 | s = (1-Outlet.v)*sl + Outlet.v*sv; |
---|
| 215 | |
---|
| 216 | "Liquid Entropy" |
---|
| 217 | sl = PP.LiquidEntropy(Outlet.T, Outlet.P, x); |
---|
[147] | 218 | |
---|
[346] | 219 | "Vapour Entropy" |
---|
| 220 | sv = PP.VapourEntropy(Outlet.T, Outlet.P, y); |
---|
| 221 | |
---|
[147] | 222 | "Average Molecular Weight" |
---|
| 223 | Mw = sum(M*Outlet.z); |
---|
| 224 | |
---|
[297] | 225 | switch rhoModel |
---|
| 226 | case "volume": |
---|
| 227 | "Molar Density" |
---|
| 228 | rhom * vm = 1; |
---|
| 229 | |
---|
| 230 | case "correlation": |
---|
[147] | 231 | "Mass Density" |
---|
[297] | 232 | rho*((1-Outlet.v)/PP.LiquidDensity(Outlet.T,Outlet.P,x) + Outlet.v/PP.VapourDensity(Outlet.T,Outlet.P,y)) = 1; |
---|
| 233 | end |
---|
| 234 | |
---|
| 235 | "Mass or Molar Density" |
---|
| 236 | rhom * Mw = rho; |
---|
[147] | 237 | |
---|
| 238 | "Flow Mass" |
---|
| 239 | Fw = Mw*Outlet.F; |
---|
| 240 | |
---|
| 241 | "Molar Volume" |
---|
| 242 | vm = (1-Outlet.v)*PP.LiquidVolume(Outlet.T, Outlet.P, x) + Outlet.v*PP.VapourVolume(Outlet.T,Outlet.P,y); |
---|
| 243 | |
---|
| 244 | "Volumetric Flow" |
---|
| 245 | Fvol = Outlet.F*vm ; |
---|
| 246 | |
---|
[297] | 247 | "Mass Fraction" |
---|
[501] | 248 | zmass = M*Outlet.z / Mw; |
---|
[147] | 249 | |
---|
[501] | 250 | "Temperature in °C" |
---|
| 251 | T_Cdeg = Outlet.T - 273.15 * 'K'; |
---|
| 252 | |
---|
[117] | 253 | end |
---|
| 254 | |
---|
[311] | 255 | Model simple_source |
---|
| 256 | ATTRIBUTES |
---|
[321] | 257 | Pallete = true; |
---|
[311] | 258 | Icon = "icon/Source"; |
---|
| 259 | Brief = "Simple material stream source"; |
---|
| 260 | Info = " |
---|
| 261 | This model should be used for boundary streams. |
---|
| 262 | Usually these streams are known and come from another process |
---|
| 263 | units. |
---|
| 264 | |
---|
| 265 | The user should specify: |
---|
| 266 | * Total molar flow |
---|
| 267 | * Temperature |
---|
| 268 | * Pressure |
---|
| 269 | * Molar composition |
---|
| 270 | "; |
---|
| 271 | |
---|
| 272 | PARAMETERS |
---|
| 273 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 274 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
| 275 | |
---|
| 276 | VARIABLES |
---|
[352] | 277 | out Outlet as stream (Brief = "Outlet stream", PosX=1, PosY=0.5256, Symbol="_{out}"); |
---|
[551] | 278 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 279 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
[346] | 280 | hl as enth_mol (Brief = "Liquid Enthalpy"); |
---|
| 281 | hv as enth_mol (Brief = "Vapour Enthalpy"); |
---|
| 282 | s as entr_mol (Brief = "Stream Entropy"); |
---|
| 283 | sl as entr_mol (Brief = "Liquid Entropy"); |
---|
| 284 | sv as entr_mol (Brief = "Vapour Entropy"); |
---|
[323] | 285 | |
---|
[311] | 286 | EQUATIONS |
---|
| 287 | "Flash Calculation" |
---|
| 288 | [Outlet.v, x, y] = PP.Flash(Outlet.T, Outlet.P, Outlet.z); |
---|
| 289 | |
---|
| 290 | "Overall Enthalpy" |
---|
[346] | 291 | Outlet.h = (1-Outlet.v)*hl + Outlet.v*hv; |
---|
[311] | 292 | |
---|
[346] | 293 | "Liquid Enthalpy" |
---|
[311] | 294 | hl = PP.LiquidEnthalpy(Outlet.T, Outlet.P, x); |
---|
[346] | 295 | |
---|
| 296 | "Vapour Enthalpy" |
---|
[311] | 297 | hv = PP.VapourEnthalpy(Outlet.T, Outlet.P, y); |
---|
[346] | 298 | |
---|
| 299 | "Overall Entropy" |
---|
| 300 | s = (1-Outlet.v)*sl + Outlet.v*sv; |
---|
| 301 | |
---|
| 302 | "Liquid Entropy" |
---|
| 303 | sl = PP.LiquidEntropy(Outlet.T, Outlet.P, x); |
---|
| 304 | |
---|
| 305 | "Vapour Entropy" |
---|
| 306 | sv = PP.VapourEntropy(Outlet.T, Outlet.P, y); |
---|
[311] | 307 | end |
---|
| 308 | |
---|
[117] | 309 | Model sink |
---|
| 310 | ATTRIBUTES |
---|
[321] | 311 | Pallete = true; |
---|
[310] | 312 | Icon = "icon/Sink"; |
---|
[290] | 313 | Brief = "Material stream sink"; |
---|
| 314 | Info = " |
---|
| 315 | This model should be used for boundary streams when additional |
---|
| 316 | information about the stream is desired. |
---|
[117] | 317 | |
---|
[290] | 318 | Some of the additional informations calculated by this models are: |
---|
| 319 | * Mass density |
---|
| 320 | * Mass flow |
---|
| 321 | * Mass compostions |
---|
| 322 | * Specific volume |
---|
| 323 | * Vapour fraction |
---|
| 324 | * Volumetric flow |
---|
| 325 | * Liquid and Vapour compositions |
---|
| 326 | "; |
---|
| 327 | |
---|
[117] | 328 | PARAMETERS |
---|
[147] | 329 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 330 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
[297] | 331 | M(NComp) as molweight (Brief = "Component Mol Weight"); |
---|
| 332 | rhoModel as Switcher (Brief = "Density model", Valid = ["volume", "correlation"], Default="volume"); |
---|
[117] | 333 | |
---|
[147] | 334 | SET |
---|
| 335 | |
---|
| 336 | M = PP.MolecularWeight(); |
---|
| 337 | |
---|
[117] | 338 | VARIABLES |
---|
[352] | 339 | in Inlet as stream (Brief = "Inlet Stream", PosX=0, PosY=0.5308, Symbol="_{in}"); |
---|
[325] | 340 | v as fraction (Brief = "Vapourization fraction"); |
---|
[551] | 341 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 342 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
[297] | 343 | zmass(NComp) as fraction (Brief = "Mass Fraction"); |
---|
| 344 | Mw as molweight (Brief = "Average Mol Weight"); |
---|
| 345 | vm as volume_mol (Brief = "Molar Volume"); |
---|
| 346 | rho as dens_mass (Brief = "Stream Mass Density"); |
---|
| 347 | rhom as dens_mol (Brief = "Stream Molar Density"); |
---|
| 348 | Fw as flow_mass (Brief = "Stream Mass Flow"); |
---|
| 349 | Fvol as flow_vol (Brief = "Volumetric Flow"); |
---|
[346] | 350 | s as entr_mol (Brief = "Stream Entropy"); |
---|
[501] | 351 | T_Cdeg as temperature (Brief = "Temperature in °C", Lower=-200); |
---|
[346] | 352 | |
---|
[117] | 353 | EQUATIONS |
---|
| 354 | "Flash Calculation" |
---|
[123] | 355 | [v, x, y] = PP.FlashPH(Inlet.P, Inlet.h, Inlet.z); |
---|
[147] | 356 | |
---|
| 357 | "Average Molecular Weight" |
---|
| 358 | Mw = sum(M*Inlet.z); |
---|
| 359 | |
---|
[297] | 360 | switch rhoModel |
---|
| 361 | case "volume": |
---|
| 362 | "Molar Density" |
---|
| 363 | rhom * vm = 1; |
---|
| 364 | |
---|
| 365 | case "correlation": |
---|
[147] | 366 | "Mass Density" |
---|
[297] | 367 | rho * ((1-v)/PP.LiquidDensity(Inlet.T,Inlet.P,x) + v/PP.VapourDensity(Inlet.T,Inlet.P,y)) = 1; |
---|
| 368 | end |
---|
| 369 | |
---|
| 370 | "Mass or Molar Density" |
---|
| 371 | rhom * Mw = rho; |
---|
[147] | 372 | |
---|
| 373 | "Flow Mass" |
---|
| 374 | Fw = Mw*Inlet.F; |
---|
| 375 | |
---|
| 376 | "Molar Volume" |
---|
| 377 | vm = (1-v)*PP.LiquidVolume(Inlet.T, Inlet.P, x) + v*PP.VapourVolume(Inlet.T,Inlet.P,y); |
---|
| 378 | |
---|
| 379 | "Volumetric Flow" |
---|
| 380 | Fvol = Inlet.F*vm ; |
---|
| 381 | |
---|
| 382 | "Mass Fraction" |
---|
| 383 | zmass = M*Inlet.z / Mw; |
---|
| 384 | |
---|
[346] | 385 | "Overall Entropy" |
---|
| 386 | s = (1-v)*PP.LiquidEntropy(Inlet.T, Inlet.P, x) + |
---|
| 387 | v*PP.VapourEntropy(Inlet.T, Inlet.P, y); |
---|
[501] | 388 | |
---|
| 389 | "Temperature in °C" |
---|
| 390 | T_Cdeg = Inlet.T - 273.15 * 'K'; |
---|
| 391 | |
---|
[117] | 392 | end |
---|
[299] | 393 | |
---|
[311] | 394 | Model simple_sink |
---|
| 395 | ATTRIBUTES |
---|
[321] | 396 | Pallete = true; |
---|
[311] | 397 | Icon = "icon/Sink"; |
---|
| 398 | Brief = "Simple material stream sink"; |
---|
| 399 | Info = " |
---|
| 400 | This model should be used for boundary streams when no additional |
---|
| 401 | information about the stream is desired. |
---|
| 402 | "; |
---|
| 403 | |
---|
| 404 | VARIABLES |
---|
[352] | 405 | in Inlet as stream (Brief = "Inlet Stream", PosX=0, PosY=0.5308, Symbol="_{in}"); |
---|
[311] | 406 | end |
---|
| 407 | |
---|
[299] | 408 | Model energy_source |
---|
| 409 | ATTRIBUTES |
---|
[321] | 410 | Pallete = true; |
---|
[310] | 411 | Icon = "icon/energy_source"; |
---|
[562] | 412 | Brief = "Energy stream source"; |
---|
[299] | 413 | |
---|
| 414 | VARIABLES |
---|
[555] | 415 | out OutletQ as power(Brief = "Outlet energy stream", PosX=1, PosY=0.46, Symbol="_{out}"); |
---|
[299] | 416 | end |
---|
[569] | 417 | |
---|
| 418 | Model info_stream |
---|
| 419 | ATTRIBUTES |
---|
| 420 | Pallete = true; |
---|
| 421 | Icon = "icon/Info_Stream"; |
---|
| 422 | Brief = "Material stream information"; |
---|
| 423 | Info = " |
---|
| 424 | This model should be used for middle streams when additional |
---|
| 425 | information about the stream is desired. |
---|
| 426 | |
---|
| 427 | Some of the additional informations calculated by this models are: |
---|
| 428 | * Mass density |
---|
| 429 | * Mass flow |
---|
| 430 | * Mass compostions |
---|
| 431 | * Specific volume |
---|
| 432 | * Vapour fraction |
---|
| 433 | * Volumetric flow |
---|
| 434 | * Liquid and Vapour compositions |
---|
| 435 | * Viscosity |
---|
| 436 | * Heat Capacity |
---|
| 437 | * Thermal Conductivity |
---|
| 438 | * Temperature in Celsius Degrees |
---|
| 439 | "; |
---|
| 440 | |
---|
| 441 | PARAMETERS |
---|
| 442 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 443 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
| 444 | M(NComp) as molweight (Brief = "Component Mol Weight"); |
---|
| 445 | |
---|
| 446 | SET |
---|
| 447 | |
---|
| 448 | M = PP.MolecularWeight(); |
---|
| 449 | |
---|
| 450 | VARIABLES |
---|
| 451 | |
---|
| 452 | in Inlet as stream (Brief = "Inlet Stream", PosX=0, PosY=0.5308, Protected=true , Symbol="_{in}"); |
---|
| 453 | out Outlet as stream (Brief = "Outlet Stream", PosX=1, PosY=0.5308, Protected=true , Symbol="_{out}"); |
---|
| 454 | |
---|
| 455 | v as fraction (Brief = "Vapourization fraction",Hidden=true); |
---|
| 456 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 457 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
| 458 | |
---|
| 459 | Fw as flow_mass (Brief = "Stream Mass Flow",Protected=true); |
---|
| 460 | Fvol as flow_vol (Brief = "Volumetric Flow",Protected=true); |
---|
| 461 | T_Cdeg as temperature (Brief = "Temperature in °C", Lower=-200,Protected=true); |
---|
| 462 | |
---|
| 463 | Mu as viscosity (Brief="Stream Viscosity",Lower=0.0001, Symbol = "\mu",Protected=true); |
---|
| 464 | Cp as cp_mol (Brief="Stream Molar Heat Capacity", Upper=1e10,Protected=true); |
---|
| 465 | K as conductivity (Brief="Stream Thermal Conductivity", Default=1.0, Lower=1e-5, Upper=500,Protected=true); |
---|
| 466 | Mw as molweight (Brief = "Average Mol Weight",Protected=true); |
---|
| 467 | vm as volume_mol (Brief = "Molar Volume",Protected=true); |
---|
| 468 | rho as dens_mass (Brief = "Stream Mass Density",Protected=true); |
---|
| 469 | rhom as dens_mol (Brief = "Stream Molar Density",Protected=true); |
---|
| 470 | s as entr_mol (Brief = "Stream Entropy",Protected=true); |
---|
| 471 | zmass(NComp) as fraction (Brief = "Mass Fraction",Protected=true); |
---|
| 472 | |
---|
| 473 | EQUATIONS |
---|
| 474 | |
---|
| 475 | "Flash Calculation" |
---|
| 476 | [v, x, y] = PP.FlashPH(Inlet.P, Inlet.h, Inlet.z); |
---|
| 477 | |
---|
| 478 | "Average Molecular Weight" |
---|
| 479 | Mw = sum(M*Inlet.z); |
---|
| 480 | |
---|
| 481 | "Mass Density" |
---|
| 482 | rho * ((1-v)/PP.LiquidDensity(Inlet.T,Inlet.P,x) + v/PP.VapourDensity(Inlet.T,Inlet.P,y)) = 1; |
---|
| 483 | |
---|
| 484 | "Mass or Molar Density" |
---|
| 485 | rhom * Mw = rho; |
---|
| 486 | |
---|
| 487 | "Flow Mass" |
---|
| 488 | Fw = Mw*Inlet.F; |
---|
| 489 | |
---|
| 490 | "Molar Volume" |
---|
| 491 | vm = (1-v)*PP.LiquidVolume(Inlet.T, Inlet.P, x) + v*PP.VapourVolume(Inlet.T,Inlet.P,y); |
---|
| 492 | |
---|
| 493 | "Volumetric Flow" |
---|
| 494 | Fvol = Inlet.F*vm ; |
---|
| 495 | |
---|
| 496 | "Mass Fraction" |
---|
| 497 | zmass = M*Inlet.z / Mw; |
---|
| 498 | |
---|
| 499 | "Stream Heat Capacity" |
---|
| 500 | Cp = (1-v)*PP.LiquidCp(Inlet.T, Inlet.P, x) + v*PP.VapourCp(Inlet.T,Inlet.P,y); |
---|
| 501 | |
---|
| 502 | "Stream Viscosity" |
---|
| 503 | Mu = (1-v)*PP.LiquidViscosity(Inlet.T, Inlet.P, x) + v*PP.VapourViscosity(Inlet.T,Inlet.P,y); |
---|
| 504 | |
---|
| 505 | "Stream ThermalConductivity" |
---|
| 506 | K = (1-v)*PP.LiquidThermalConductivity(Inlet.T, Inlet.P, x) + v*PP.VapourThermalConductivity(Inlet.T,Inlet.P,y); |
---|
| 507 | |
---|
| 508 | "Stream Overall Entropy" |
---|
| 509 | s = (1-v)*PP.LiquidEntropy(Inlet.T, Inlet.P, x) + v*PP.VapourEntropy(Inlet.T, Inlet.P, y); |
---|
| 510 | |
---|
| 511 | "Temperature in °C" |
---|
| 512 | T_Cdeg = Inlet.T - 273.15 * 'K'; |
---|
| 513 | |
---|
| 514 | "Outlet Flow" |
---|
| 515 | Outlet.F = Inlet.F; |
---|
| 516 | |
---|
| 517 | "Outlet Temperature" |
---|
| 518 | Outlet.T = Inlet.T; |
---|
| 519 | |
---|
| 520 | "Outlet Pressure" |
---|
| 521 | Outlet.P = Inlet.P; |
---|
| 522 | |
---|
| 523 | "Outlet Vapour Fraction" |
---|
| 524 | Outlet.v = Inlet.v; |
---|
| 525 | |
---|
| 526 | "Outlet Enthalpy" |
---|
| 527 | Outlet.h = Inlet.h; |
---|
| 528 | |
---|
| 529 | "Outlet Composition" |
---|
| 530 | Outlet.z= Inlet.z; |
---|
| 531 | |
---|
| 532 | end |
---|
[571] | 533 | |
---|
| 534 | Model source_testing |
---|
| 535 | |
---|
[576] | 536 | ATTRIBUTES |
---|
[571] | 537 | Pallete = true; |
---|
| 538 | Icon = "icon/Source"; |
---|
| 539 | Brief = "Material stream source"; |
---|
| 540 | Info = " |
---|
| 541 | This model should be used for boundary streams. |
---|
| 542 | Usually these streams are known and come from another process |
---|
| 543 | units. |
---|
| 544 | |
---|
| 545 | The user should specify: |
---|
| 546 | * Total molar (mass or volumetric) flow |
---|
| 547 | * Temperature |
---|
| 548 | * Pressure |
---|
[576] | 549 | * Molar or mass composition |
---|
[571] | 550 | |
---|
| 551 | No matter the specification set, the model will calculate some |
---|
| 552 | additional properties: |
---|
| 553 | * Mass density |
---|
| 554 | * Mass flow |
---|
| 555 | * Mass compostions |
---|
| 556 | * Specific volume |
---|
| 557 | * Vapour fraction |
---|
| 558 | * Volumetric flow |
---|
| 559 | * Liquid and Vapour compositions |
---|
| 560 | "; |
---|
| 561 | |
---|
[576] | 562 | PARAMETERS |
---|
| 563 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 564 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
| 565 | M(NComp) as molweight (Brief = "Component Mol Weight"); |
---|
[571] | 566 | CompostionBasis as Switcher (Brief = "Molar or Mass Compostion", Valid = ["Molar", "Mass"], Default="Molar"); |
---|
[577] | 567 | ValidPhases as Switcher (Brief = "Valid Phases for Flash Calculation", Valid = ["Vapour-Only", "Liquid-Only","Vapour-Liquid"], Default="Vapour-Liquid"); |
---|
[571] | 568 | |
---|
| 569 | |
---|
[576] | 570 | SET |
---|
| 571 | |
---|
[571] | 572 | M = PP.MolecularWeight(); |
---|
| 573 | |
---|
[576] | 574 | VARIABLES |
---|
| 575 | |
---|
| 576 | out Outlet as stream (Brief = "Outlet stream", PosX=1, PosY=0.5256, Symbol="_{out}",Protected=true); |
---|
| 577 | |
---|
| 578 | Composition(NComp) as fraction (Brief = "Stream Composition"); |
---|
| 579 | F as flow_mol (Brief = "Stream Molar Flow Rate"); |
---|
| 580 | Fw as flow_mass (Brief = "Stream Mass Flow"); |
---|
| 581 | Fvol as flow_vol (Brief = "Volumetric Flow"); |
---|
| 582 | T as temperature (Brief = "Stream Temperature"); |
---|
| 583 | T_Cdeg as temperature (Brief = "Temperature in °C", Lower=-200); |
---|
| 584 | P as pressure (Brief = "Stream Pressure"); |
---|
| 585 | |
---|
[571] | 586 | x(NComp) as fraction (Brief = "Liquid Molar Fraction",Hidden=true); |
---|
| 587 | y(NComp) as fraction (Brief = "Vapour Molar Fraction",Hidden=true); |
---|
| 588 | |
---|
[576] | 589 | Mw as molweight (Brief = "Average Mol Weight",Protected=true); |
---|
| 590 | vm as volume_mol (Brief = "Molar Volume",Protected=true); |
---|
| 591 | rho as dens_mass (Brief = "Stream Mass Density",Protected=true); |
---|
| 592 | rhom as dens_mol (Brief = "Stream Molar Density",Protected=true); |
---|
| 593 | |
---|
| 594 | zmass(NComp) as fraction (Brief = "Mass Fraction",Protected=true); |
---|
| 595 | |
---|
[571] | 596 | EQUATIONS |
---|
| 597 | |
---|
| 598 | switch CompostionBasis |
---|
| 599 | |
---|
| 600 | case "Molar": |
---|
| 601 | "Stream Molar Composition" |
---|
| 602 | Outlet.z = Composition/sum(Composition); |
---|
| 603 | |
---|
| 604 | "Stream Mass Composition" |
---|
| 605 | zmass = M*Outlet.z / Mw; |
---|
| 606 | |
---|
| 607 | case "Mass": |
---|
| 608 | "Stream Mass Composition" |
---|
| 609 | zmass = Composition/sum(Composition); |
---|
| 610 | |
---|
| 611 | "Stream Molar Composition" |
---|
[575] | 612 | Outlet.z*sum(zmass/M) = zmass/M; |
---|
[571] | 613 | |
---|
| 614 | end |
---|
| 615 | |
---|
[577] | 616 | switch ValidPhases |
---|
[575] | 617 | |
---|
[577] | 618 | case "Liquid-Only": |
---|
| 619 | |
---|
| 620 | "Vapour Fraction" |
---|
| 621 | Outlet.v = 0; |
---|
| 622 | |
---|
| 623 | "Liquid Composition" |
---|
| 624 | x = Outlet.z; |
---|
| 625 | |
---|
| 626 | "Vapour Composition" |
---|
| 627 | y = Outlet.z; |
---|
| 628 | |
---|
| 629 | "Overall Enthalpy" |
---|
| 630 | Outlet.h = PP.LiquidEnthalpy(Outlet.T, Outlet.P, x); |
---|
| 631 | |
---|
| 632 | "Molar Volume" |
---|
| 633 | vm = PP.LiquidVolume(Outlet.T, Outlet.P, x); |
---|
| 634 | |
---|
| 635 | case "Vapour-Only": |
---|
| 636 | |
---|
| 637 | "Vapor Fraction" |
---|
| 638 | Outlet.v = 1; |
---|
| 639 | |
---|
| 640 | "Liquid Composition" |
---|
| 641 | x = Outlet.z; |
---|
| 642 | |
---|
| 643 | "Vapour Composition" |
---|
| 644 | y = Outlet.z; |
---|
| 645 | |
---|
| 646 | "Overall Enthalpy" |
---|
| 647 | Outlet.h = PP.VapourEnthalpy(Outlet.T, Outlet.P, y); |
---|
| 648 | |
---|
| 649 | "Molar Volume" |
---|
| 650 | vm = PP.VapourVolume(Outlet.T, Outlet.P, y); |
---|
| 651 | |
---|
| 652 | |
---|
| 653 | case "Vapour-Liquid": |
---|
| 654 | |
---|
[576] | 655 | "Flash Calculation" |
---|
[571] | 656 | [Outlet.v, x, y] = PP.Flash(Outlet.T, Outlet.P, Outlet.z); |
---|
| 657 | |
---|
[576] | 658 | "Overall Enthalpy" |
---|
| 659 | Outlet.h = (1-Outlet.v)*PP.LiquidEnthalpy(Outlet.T, Outlet.P, x) + Outlet.v*PP.VapourEnthalpy(Outlet.T, Outlet.P, y); |
---|
[571] | 660 | |
---|
[577] | 661 | "Molar Volume" |
---|
| 662 | vm = (1-Outlet.v)*PP.LiquidVolume(Outlet.T, Outlet.P, x) + Outlet.v*PP.VapourVolume(Outlet.T,Outlet.P,y); |
---|
[571] | 663 | |
---|
[577] | 664 | end |
---|
| 665 | |
---|
[576] | 666 | "Molar Density" |
---|
[577] | 667 | rhom * vm = 1; |
---|
| 668 | |
---|
| 669 | "Average Molecular Weight" |
---|
| 670 | Mw = sum(M*Outlet.z); |
---|
| 671 | |
---|
[576] | 672 | "Mass or Molar Density" |
---|
[571] | 673 | rhom * Mw = rho; |
---|
| 674 | |
---|
[576] | 675 | "Flow Mass" |
---|
[571] | 676 | Fw = Mw*Outlet.F; |
---|
| 677 | |
---|
[576] | 678 | "Volumetric Flow" |
---|
[571] | 679 | Fvol = Outlet.F*vm ; |
---|
| 680 | |
---|
[576] | 681 | "Temperature in °C" |
---|
[571] | 682 | T_Cdeg = Outlet.T - 273.15 * 'K'; |
---|
| 683 | |
---|
[576] | 684 | "Equate Flow" |
---|
| 685 | Outlet.F = F; |
---|
| 686 | |
---|
| 687 | "Equate Pressures" |
---|
| 688 | Outlet.P = P; |
---|
| 689 | |
---|
| 690 | "Equate Temperatures" |
---|
| 691 | Outlet.T = T; |
---|
| 692 | |
---|
[571] | 693 | end |
---|