1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Author: Paula B. Staudt |
---|
17 | * $Id: tray.mso 522 2008-05-21 23:21:12Z arge $ |
---|
18 | *--------------------------------------------------------------------*# |
---|
19 | |
---|
20 | using "streams"; |
---|
21 | |
---|
22 | Model tray |
---|
23 | |
---|
24 | ATTRIBUTES |
---|
25 | Pallete = false; |
---|
26 | Icon = "icon/Tray"; |
---|
27 | Brief = "Complete model of a column tray."; |
---|
28 | Info = |
---|
29 | "== Assumptions == |
---|
30 | * both phases (liquid and vapour) exists all the time; |
---|
31 | * thermodymanic equilibrium with Murphree plate efficiency; |
---|
32 | * no entrainment of liquid or vapour phase; |
---|
33 | * no weeping; |
---|
34 | * the dymanics in the downcomer are neglected. |
---|
35 | |
---|
36 | == Options == |
---|
37 | You can choose the equation for the liquid outlet flow and the vapour |
---|
38 | inlet flow calculation through the VapourFlowModel and LiquidFlowModel |
---|
39 | switchers. |
---|
40 | |
---|
41 | == References == |
---|
42 | * ELGUE, S.; PRAT, L.; CABASSUD, M.; LANN, J. L.; CéZERAC, J. Dynamic models for start-up operations of batch distillation columns with experimental validation. Computers and Chemical Engineering, v. 28, p. 2735-2747, 2004. |
---|
43 | * FEEHERY, W. F. Dynamic Optimization with Path Constraints. Tese (Doutorado) - Massachusetts Institute of Technology, June 1998. |
---|
44 | * KLINGBERG, A. Modeling and Optimization of Batch Distillation. Dissertação (Mestrado) - Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, fev. 2000. |
---|
45 | * OLSEN, I.; ENDRESTOL, G. O.; SIRA, T. A rigorous and efficient distillation column model for engineering and training simulators. Computers and Chemical Engineering,v. 21, n. Suppl, p. S193-S198, 1997. |
---|
46 | * REEPMEYER, F.; REPKE, J.-U.; WOZNY, G. Analysis of the start-up process for reactive distillation. Chemical Engineering Technology, v. 26, p. 81-86, 2003. |
---|
47 | * ROFFEL, B.; BETLEM, B.; RUIJTER, J. de. First principles dynamic modeling and multivariable control of a cryogenic distillation column process. Computers and Chemical Engineering, v. 24, p. 111-123, 2000. |
---|
48 | * WANG, L.; LI, P.; WOZNY, G.; WANG, S. A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemical Engineering, v. 27, p.1485-1497, 2003. |
---|
49 | "; |
---|
50 | |
---|
51 | PARAMETERS |
---|
52 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
53 | outer NComp as Integer (Brief="Number of components"); |
---|
54 | |
---|
55 | Mw(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); |
---|
56 | Gconst as acceleration (Brief="Gravity Acceleration",Default=9.81,Hidden=true); |
---|
57 | zero_flow as flow_mol (Brief = "Stream Flow closed",Default = 0, Hidden=true); |
---|
58 | low_flow as flow_mol (Brief = "Low stream Flow",Default = 1E-6, Hidden=true); |
---|
59 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi",Hidden=true); |
---|
60 | |
---|
61 | TrayDiameter_ as length (Brief="Tray Diameter",Default=1.600); |
---|
62 | TraySpacing_ as length (Brief="Tray Spacing",Default=0.600); |
---|
63 | Fraction_HoleArea_ as fraction (Brief="Fraction of the active area that is occupied by the holes with respect to the total tray area",Default=0.10); |
---|
64 | Fraction_DowncomerArea_ as fraction (Brief="Fraction of the downcomer area with respect to the total tray area",Default=0.20); |
---|
65 | WeirLength_ as length (Brief="Weir length", Default = 1); |
---|
66 | WeirHeight_ as length (Brief="Weir height", Default= 0.05); |
---|
67 | TrayLiquidPasses_ as positive (Brief="Number of liquid passes in the tray", Lower = 1,Default=1); |
---|
68 | HeatSupply_ as heat_rate (Brief="Rate of heat supply",Default = 0); |
---|
69 | AerationFraction_ as Real (Brief="Aeration fraction", Default = 1); |
---|
70 | DryPdropCoeff_ as Real (Brief="Dry pressure drop coefficient", Default= 0.60); |
---|
71 | MurphreeEff_ as Real (Brief="Murphree efficiency for All Trays",Lower=0.01,Upper=1); |
---|
72 | |
---|
73 | PlateArea_ as area (Brief="Plate area = Atray - Adowncomer",Protected=true); |
---|
74 | TrayVolume_ as volume (Brief="Total Volume of the tray",Protected=true); |
---|
75 | HolesArea_ as area (Brief="Total holes area",Protected=true); |
---|
76 | |
---|
77 | FeeheryCoeff as Real (Brief="Feeherys correlation coefficient", Unit='1/m^4', Default=1,Hidden=true); |
---|
78 | ElgueCoeff as Real (Brief="Elgues correlation coefficient", Unit='kg/m/mol^2', Default=1,Hidden=true); |
---|
79 | OlsenCoeff as Real (Brief="Olsens correlation coefficient", Default=1,Hidden=true); |
---|
80 | |
---|
81 | VapourFlow as Switcher (Brief="Flag for Vapour Flow condition",Valid = ["on", "off"], Default = "off",Hidden=true); |
---|
82 | LiquidFlow as Switcher (Brief="Flag for Liquid Flow condition",Valid = ["on", "off"], Default = "off",Hidden=true); |
---|
83 | |
---|
84 | VARIABLES |
---|
85 | |
---|
86 | Inlet as stream (Brief="Feed stream", Hidden=true, PosX=0, PosY=0.4932, Symbol="_{in}"); |
---|
87 | LiquidSideStream as liquid_stream (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}"); |
---|
88 | VapourSideStream as vapour_stream (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}"); |
---|
89 | |
---|
90 | in InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}"); |
---|
91 | in InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}"); |
---|
92 | out OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}"); |
---|
93 | out OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}"); |
---|
94 | |
---|
95 | LFlowModel as positive (Brief="Flag for Liquid Flow Model",Lower = 1, Default = 1 , Hidden=true); |
---|
96 | VFlowModel as positive (Brief="Flag for Vapour Flow Model",Lower = 1, Default = 1 , Hidden=true); |
---|
97 | |
---|
98 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
99 | ML as mol (Brief="Molar liquid holdup"); |
---|
100 | MV as mol (Brief="Molar vapour holdup"); |
---|
101 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
102 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
103 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
104 | Level as length (Brief="Height of clear liquid on plate"); |
---|
105 | yideal(NComp) as fraction; |
---|
106 | rhoL as dens_mass (Brief="Mass Density of liquid phase"); |
---|
107 | rhoV as dens_mass (Brief="Mass Density of vapour phase"); |
---|
108 | |
---|
109 | SET |
---|
110 | |
---|
111 | Mw = PP.MolecularWeight(); |
---|
112 | zero_flow = 0 * 'kmol/h'; |
---|
113 | low_flow = 1E-6 * 'kmol/h'; |
---|
114 | |
---|
115 | PlateArea_ = 0.25*Pi*(TrayDiameter_^2)*(1-Fraction_DowncomerArea_); |
---|
116 | TrayVolume_ = 0.25*Pi*(TrayDiameter_^2)*TraySpacing_; |
---|
117 | HolesArea_ = 0.25*Pi*(TrayDiameter_^2)*Fraction_HoleArea_; |
---|
118 | |
---|
119 | EQUATIONS |
---|
120 | |
---|
121 | # LiquidFlow and VapourFlow equations need to be linerized to avoid indetermination ! |
---|
122 | switch LiquidFlow |
---|
123 | |
---|
124 | case "on": |
---|
125 | |
---|
126 | if LFlowModel equal 1 then |
---|
127 | "Francis Equation" |
---|
128 | OutletLiquid.F*vL = 1.84*'1/s'*WeirLength_*((Level-(AerationFraction_*WeirHeight_))/(AerationFraction_))^2; |
---|
129 | |
---|
130 | else if LFlowModel equal 2 then |
---|
131 | "Wang_Fl" |
---|
132 | OutletLiquid.F*vL = 1.84*'m^0.5/s'*WeirLength_*((Level-(AerationFraction_*WeirHeight_))/(AerationFraction_))^1.5; |
---|
133 | |
---|
134 | else if LFlowModel equal 3 then |
---|
135 | "Olsen" |
---|
136 | OutletLiquid.F / 'mol/s'= WeirLength_*TrayLiquidPasses_*rhoL/sum(Mw*OutletVapour.z)/(0.665*OlsenCoeff)^1.5 * ((ML*sum(Mw*OutletLiquid.z)/rhoL/PlateArea_)-WeirHeight_)^1.5 * 'm^0.5/mol'; |
---|
137 | |
---|
138 | else if LFlowModel equal 4 then |
---|
139 | "Feehery_Fl" |
---|
140 | OutletLiquid.F = WeirLength_*rhoL/sum(Mw*OutletLiquid.z) * ((Level-WeirHeight_)/750/'mm')^1.5 * 'm^2/s'; |
---|
141 | |
---|
142 | else |
---|
143 | "Roffel_Fl" |
---|
144 | OutletLiquid.F = 2/3*rhoL/sum(Mw*OutletLiquid.z)*WeirLength_*(ML*sum(Mw*OutletLiquid.z)/(PlateArea_*1.3)/rhoL)^1.5*sqrt(2*Gconst/ |
---|
145 | (2*(1 - 0.3593/'Pa^0.0888545'*abs(OutletVapour.F*sum(Mw*OutletVapour.z)/(PlateArea_*1.3)/sqrt(rhoV))^0.177709)-1)); #/'(kg/m)^0.0888545/s^0.177709'; |
---|
146 | end |
---|
147 | end |
---|
148 | end |
---|
149 | end |
---|
150 | |
---|
151 | when Level < (AerationFraction_ *WeirHeight_) switchto "off"; |
---|
152 | |
---|
153 | case "off": |
---|
154 | |
---|
155 | "Low level" |
---|
156 | OutletLiquid.F = zero_flow; |
---|
157 | |
---|
158 | when Level > (AerationFraction_ * WeirHeight_) switchto "on"; |
---|
159 | |
---|
160 | end |
---|
161 | |
---|
162 | switch VapourFlow |
---|
163 | |
---|
164 | case "on": |
---|
165 | |
---|
166 | if VFlowModel equal 1 then |
---|
167 | "Reepmeyer" |
---|
168 | InletVapour.F*vV = sqrt((InletVapour.P - OutletVapour.P)/(rhoV*DryPdropCoeff_))*HolesArea_; |
---|
169 | |
---|
170 | else if VFlowModel equal 2 then |
---|
171 | "Feehery_Fv" |
---|
172 | InletVapour.F = rhoV/PlateArea_/FeeheryCoeff/sum(Mw*OutletVapour.z) * sqrt(((InletVapour.P - OutletVapour.P)-(rhoV*Gconst*ML*vL/PlateArea_))/rhoV); |
---|
173 | |
---|
174 | else if VFlowModel equal 3 then |
---|
175 | "Roffel_Fv" |
---|
176 | InletVapour.F^1.08 * 0.0013 * 'kg/m/mol^1.08/s^0.92*1e5' = (InletVapour.P - OutletVapour.P)*1e5 - (AerationFraction_*sum(M*Mw)/(PlateArea_*1.3)*Gconst*1e5) * (rhoV*HolesArea_/sum(Mw*OutletVapour.z))^1.08 * 'm^1.08/mol^1.08'; |
---|
177 | |
---|
178 | else if VFlowModel equal 4 then |
---|
179 | "Klingberg" |
---|
180 | InletVapour.F * vV = PlateArea_ * sqrt(((InletVapour.P - OutletVapour.P)-rhoL*Gconst*Level)/rhoV); |
---|
181 | |
---|
182 | else if VFlowModel equal 5 then |
---|
183 | "Wang_Fv" |
---|
184 | InletVapour.F * vV = PlateArea_ * sqrt(((InletVapour.P - OutletVapour.P)-rhoL*Gconst*Level)/rhoV*DryPdropCoeff_); |
---|
185 | |
---|
186 | else |
---|
187 | "Elgue" |
---|
188 | InletVapour.F = sqrt((InletVapour.P - OutletVapour.P)/ElgueCoeff); |
---|
189 | end |
---|
190 | end |
---|
191 | end |
---|
192 | end |
---|
193 | end |
---|
194 | |
---|
195 | when InletVapour.F < low_flow switchto "off"; |
---|
196 | |
---|
197 | case "off": |
---|
198 | InletVapour.F = zero_flow; |
---|
199 | |
---|
200 | when InletVapour.P > OutletVapour.P switchto "on"; |
---|
201 | |
---|
202 | end |
---|
203 | |
---|
204 | "Murphree Efficiency" |
---|
205 | OutletVapour.z = MurphreeEff_ * (yideal - InletVapour.z) + InletVapour.z; |
---|
206 | |
---|
207 | "Energy Balance" |
---|
208 | diff(E) = ( Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h + InletVapour.F*InletVapour.h- OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h |
---|
209 | - VapourSideStream.F*VapourSideStream.h - LiquidSideStream.F*LiquidSideStream.h + HeatSupply_ ); |
---|
210 | |
---|
211 | "Energy Holdup" |
---|
212 | E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletLiquid.P*TrayVolume_; |
---|
213 | |
---|
214 | "Geometry Constraint" |
---|
215 | TrayVolume_ = ML* vL + MV*vV; |
---|
216 | |
---|
217 | "Level of clear liquid over the weir" |
---|
218 | Level = ML*vL/PlateArea_; |
---|
219 | |
---|
220 | "Component Molar Balance" |
---|
221 | diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z- |
---|
222 | LiquidSideStream.F*LiquidSideStream.z-VapourSideStream.F*VapourSideStream.z; |
---|
223 | |
---|
224 | "Molar Holdup" |
---|
225 | M = ML*OutletLiquid.z + MV*OutletVapour.z; |
---|
226 | |
---|
227 | "Mol fraction normalisation" |
---|
228 | sum(OutletLiquid.z)= 1.0; |
---|
229 | |
---|
230 | "Mol fraction constraint" |
---|
231 | sum(OutletLiquid.z)= sum(OutletVapour.z); |
---|
232 | |
---|
233 | "Liquid Volume" |
---|
234 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
235 | |
---|
236 | "Vapour Volume" |
---|
237 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
238 | |
---|
239 | "Liquid Density" |
---|
240 | rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
241 | |
---|
242 | "Vapour Density" |
---|
243 | rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
244 | |
---|
245 | "Chemical Equilibrium" |
---|
246 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal; |
---|
247 | |
---|
248 | "Thermal Equilibrium" |
---|
249 | OutletVapour.T = OutletLiquid.T; |
---|
250 | |
---|
251 | "Mechanical Equilibrium" |
---|
252 | OutletVapour.P = OutletLiquid.P; |
---|
253 | |
---|
254 | "Thermal Equilibrium Vapour Side Stream" |
---|
255 | OutletVapour.T = VapourSideStream.T; |
---|
256 | |
---|
257 | "Thermal Equilibrium Liquid Side Stream" |
---|
258 | OutletLiquid.T = LiquidSideStream.T; |
---|
259 | |
---|
260 | "Mechanical Equilibrium Vapour Side Stream" |
---|
261 | OutletVapour.P= VapourSideStream.P; |
---|
262 | |
---|
263 | "Mechanical Equilibrium Liquid Side Stream" |
---|
264 | OutletLiquid.P = LiquidSideStream.P; |
---|
265 | |
---|
266 | "Composition Liquid Side Stream" |
---|
267 | OutletLiquid.z= LiquidSideStream.z; |
---|
268 | |
---|
269 | "Composition Vapour Side Stream" |
---|
270 | OutletVapour.z= VapourSideStream.z; |
---|
271 | |
---|
272 | end |
---|
273 | |
---|
274 | #*------------------------------------------------------------------- |
---|
275 | * Model of a tray with reaction |
---|
276 | *-------------------------------------------------------------------*# |
---|
277 | Model trayReac |
---|
278 | ATTRIBUTES |
---|
279 | Pallete = false; |
---|
280 | Icon = "icon/Tray"; |
---|
281 | Brief = "Model of a tray with reaction."; |
---|
282 | Info = |
---|
283 | "== Assumptions == |
---|
284 | * both phases (liquid and vapour) exists all the time; |
---|
285 | * thermodymanic equilibrium with Murphree plate efficiency; |
---|
286 | * no entrainment of liquid or vapour phase; |
---|
287 | * no weeping; |
---|
288 | * the dymanics in the downcomer are neglected. |
---|
289 | |
---|
290 | == Specify == |
---|
291 | * the Feed stream; |
---|
292 | * the Liquid inlet stream; |
---|
293 | * the Vapour inlet stream; |
---|
294 | * the Vapour outlet flow (OutletVapour.F); |
---|
295 | * the reaction related variables. |
---|
296 | |
---|
297 | == Initial == |
---|
298 | * the plate temperature (OutletLiquid.T) |
---|
299 | * the liquid height (Level) OR the liquid flow OutletLiquid.F |
---|
300 | * (NoComps - 1) OutletLiquid compositions |
---|
301 | "; |
---|
302 | |
---|
303 | PARAMETERS |
---|
304 | |
---|
305 | outer PP as Plugin(Type="PP"); |
---|
306 | outer NComp as Integer; |
---|
307 | |
---|
308 | VARIABLES |
---|
309 | |
---|
310 | Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}"); |
---|
311 | LiquidSideStream as liquid_stream (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}"); |
---|
312 | VapourSideStream as vapour_stream (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}"); |
---|
313 | |
---|
314 | |
---|
315 | in InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}"); |
---|
316 | in InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}"); |
---|
317 | out OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}"); |
---|
318 | out OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}"); |
---|
319 | |
---|
320 | yideal(NComp) as fraction; |
---|
321 | |
---|
322 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
323 | ML as mol (Brief="Molar liquid holdup"); |
---|
324 | MV as mol (Brief="Molar vapour holdup"); |
---|
325 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
326 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
327 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
328 | Level as length (Brief="Height of clear liquid on plate"); |
---|
329 | Vol as volume; |
---|
330 | |
---|
331 | rhoL as dens_mass; |
---|
332 | rhoV as dens_mass; |
---|
333 | r3 as reaction_mol (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s'); |
---|
334 | C(NComp) as conc_mol (Brief = "Molar concentration", Lower = -1); |
---|
335 | |
---|
336 | EQUATIONS |
---|
337 | |
---|
338 | "Molar Concentration" |
---|
339 | OutletLiquid.z = vL * C; |
---|
340 | |
---|
341 | "Reaction" |
---|
342 | r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4))*'l/mol/s'; |
---|
343 | |
---|
344 | "Molar Holdup" |
---|
345 | M = ML*OutletLiquid.z + MV*OutletVapour.z; |
---|
346 | |
---|
347 | "Thermal Equilibrium Vapour Side Stream" |
---|
348 | OutletVapour.T = VapourSideStream.T; |
---|
349 | |
---|
350 | "Thermal Equilibrium Liquid Side Stream" |
---|
351 | OutletLiquid.T = LiquidSideStream.T; |
---|
352 | |
---|
353 | "Mechanical Equilibrium Vapour Side Stream" |
---|
354 | OutletVapour.P= VapourSideStream.P; |
---|
355 | |
---|
356 | "Mechanical Equilibrium Liquid Side Stream" |
---|
357 | OutletLiquid.P = LiquidSideStream.P; |
---|
358 | |
---|
359 | "Composition Liquid Side Stream" |
---|
360 | OutletLiquid.z= LiquidSideStream.z; |
---|
361 | |
---|
362 | "Composition Vapour Side Stream" |
---|
363 | OutletVapour.z= VapourSideStream.z; |
---|
364 | |
---|
365 | "Mol fraction normalisation" |
---|
366 | sum(OutletLiquid.z)= 1.0; |
---|
367 | |
---|
368 | "Liquid Volume" |
---|
369 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
370 | |
---|
371 | "Vapour Volume" |
---|
372 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
373 | |
---|
374 | "Thermal Equilibrium" |
---|
375 | OutletVapour.T = OutletLiquid.T; |
---|
376 | |
---|
377 | "Mechanical Equilibrium" |
---|
378 | OutletVapour.P = OutletLiquid.P; |
---|
379 | |
---|
380 | Vol = ML*vL; |
---|
381 | |
---|
382 | "Liquid Density" |
---|
383 | rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
384 | |
---|
385 | "Vapour Density" |
---|
386 | rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
387 | |
---|
388 | "Chemical Equilibrium" |
---|
389 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal; |
---|
390 | |
---|
391 | sum(OutletLiquid.z)= sum(OutletVapour.z); |
---|
392 | |
---|
393 | end |
---|
394 | |
---|
395 | #*------------------------------------- |
---|
396 | * Model of a packed column stage |
---|
397 | -------------------------------------*# |
---|
398 | Model packedStage |
---|
399 | |
---|
400 | ATTRIBUTES |
---|
401 | Pallete = false; |
---|
402 | Brief = "Complete model of a packed column stage."; |
---|
403 | Info = |
---|
404 | "== Specify == |
---|
405 | * the Feed stream |
---|
406 | * the Liquid inlet stream |
---|
407 | * the Vapour inlet stream |
---|
408 | * the stage pressure drop (deltaP) |
---|
409 | |
---|
410 | == Initial == |
---|
411 | * the plate temperature (OutletLiquid.T) |
---|
412 | * the liquid molar holdup ML |
---|
413 | * (NoComps - 1) OutletLiquid compositions |
---|
414 | "; |
---|
415 | |
---|
416 | PARAMETERS |
---|
417 | |
---|
418 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
419 | outer NComp as Integer (Brief = "Number Of Components"); |
---|
420 | |
---|
421 | LiquidResistanceCoeff as positive (Brief="Resistance coefficient on the liquid load", Default=1,Hidden=true); |
---|
422 | AreaPerPackingVolume as Real (Brief="surface area per packing volume", Unit='m^2/m^3',Hidden=true); |
---|
423 | ColumnInternalDiameter as length (Brief="Column diameter",Hidden=true); |
---|
424 | PackingVoidFraction as Real (Brief="Void fraction of packing, (m^3 void space/m^3 packed bed)",Hidden=true); |
---|
425 | HeightOfPacking as length (Brief="Height of packing",Hidden=true); |
---|
426 | Number_Stages as Integer (Brief="Number of Stages", Default=3,Hidden=true); |
---|
427 | HeatOnStage as heat_rate (Brief="Rate of heat supply",Hidden=true); |
---|
428 | |
---|
429 | HETP as length (Brief="The Height Equivalent to a Theoretical Plate",Hidden=true); |
---|
430 | ColumnArea as area (Brief="Column Sectional Cross Area",Hidden=true); |
---|
431 | V as volume (Brief="Total Volume of the tray",Hidden=true); |
---|
432 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi",Hidden=true); |
---|
433 | Gconst as acceleration (Brief="Gravity Acceleration",Default=9.81,Hidden=true); |
---|
434 | |
---|
435 | low_flow as flow_mol (Brief ="Low Flow",Default = 1E-6, Hidden=true); |
---|
436 | low_pressure as pressure (Brief ="Low Pressure",Default = 1E-6, Hidden=true); |
---|
437 | zero_flow as flow_mol (Brief ="No Flow",Default = 0, Hidden=true); |
---|
438 | |
---|
439 | Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); |
---|
440 | VapourFlow as Switcher (Brief = "Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true); |
---|
441 | |
---|
442 | SET |
---|
443 | Mw = PP.MolecularWeight(); |
---|
444 | |
---|
445 | ColumnArea = 0.25*Pi*ColumnInternalDiameter^2; |
---|
446 | HETP = HeightOfPacking/Number_Stages; |
---|
447 | V = HETP * ColumnArea; |
---|
448 | |
---|
449 | low_pressure = 1E-4 * 'atm'; |
---|
450 | low_flow = 1E-6 * 'kmol/h'; |
---|
451 | zero_flow = 0 * 'kmol/h'; |
---|
452 | |
---|
453 | VARIABLES |
---|
454 | |
---|
455 | Inlet as stream (Brief="Feed stream", Symbol="_{in}",Protected=true); |
---|
456 | in InletLiquid as stream (Brief="Inlet liquid stream", Symbol="_{inL}",Protected=true); |
---|
457 | in InletVapour as stream (Brief="Inlet vapour stream", Symbol="_{inV}",Protected=true); |
---|
458 | out OutletLiquid as liquid_stream (Brief="Outlet liquid stream", Symbol="_{outL}",Protected=true); |
---|
459 | out OutletVapour as vapour_stream (Brief="Outlet vapour stream", Symbol="_{outV}",Protected=true); |
---|
460 | |
---|
461 | M(NComp) as mol (Brief="Molar Holdup in the tray", Default=0.01, Lower=-0.000001, Upper=100,Protected=true); |
---|
462 | ML as mol (Brief="Molar liquid holdup", Default=0.01, Lower=0, Upper=100,Protected=true); |
---|
463 | MV as mol (Brief="Molar vapour holdup", Default=0.01, Lower=0, Upper=100,Protected=true); |
---|
464 | E as energy (Brief="Total Energy Holdup on tray", Default=-500,Protected=true); |
---|
465 | vL as volume_mol (Brief="Liquid Molar Volume",Protected=true); |
---|
466 | vV as volume_mol (Brief="Vapour Molar volume",Protected=true); |
---|
467 | miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s',Protected=true); |
---|
468 | rhoL as dens_mass (Brief="Liquid mass density",Protected=true); |
---|
469 | rhoV as dens_mass (Brief="Vapour mass density",Protected=true); |
---|
470 | uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Lower=-10, Upper=1000,Protected=true); |
---|
471 | uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Lower=-10, Upper=1000,Protected=true); |
---|
472 | Al as area (Brief="Area occupied by the liquid", Default=0.001, Upper=10,Protected=true); |
---|
473 | hl as positive (Brief="Column holdup", Unit='m^3/m^3', Default=0.01,Upper=10,Protected=true); |
---|
474 | deltaP as pressure (Brief="Stage Pressure drop",Protected=true); |
---|
475 | |
---|
476 | EQUATIONS |
---|
477 | |
---|
478 | switch VapourFlow |
---|
479 | |
---|
480 | case "on": |
---|
481 | "Pressure drop and Vapor flow, Billet (4-58)" |
---|
482 | deltaP/HETP = LiquidResistanceCoeff *( 0.5*AreaPerPackingVolume + 2/ColumnInternalDiameter) * 1/((PackingVoidFraction-hl)^3) * (uV^2) *rhoV; |
---|
483 | |
---|
484 | when InletVapour.F < low_flow switchto "off"; |
---|
485 | |
---|
486 | case "off": |
---|
487 | "Vapour Flow" |
---|
488 | InletVapour.F = zero_flow; |
---|
489 | |
---|
490 | when deltaP > low_pressure switchto "on"; |
---|
491 | |
---|
492 | end |
---|
493 | |
---|
494 | "Energy Balance" |
---|
495 | diff(E) = (Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h + InletVapour.F*InletVapour.h- OutletLiquid.F*OutletLiquid.h |
---|
496 | - OutletVapour.F*OutletVapour.h + HeatOnStage ); |
---|
497 | |
---|
498 | "Energy Holdup" |
---|
499 | E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletLiquid.P*V; |
---|
500 | |
---|
501 | "Geometry Constraint" |
---|
502 | V*PackingVoidFraction= ML*vL + MV*vV; |
---|
503 | |
---|
504 | "Volume flow rate of vapor, m^3/m^2/s" |
---|
505 | uV * (V*PackingVoidFraction/HETP - Al) = InletVapour.F * vV; |
---|
506 | |
---|
507 | "Liquid holdup" |
---|
508 | hl*V*PackingVoidFraction = ML*vL; |
---|
509 | |
---|
510 | "Liquid velocity as a function of liquid holdup, Billet (4-27)" |
---|
511 | hl^3 = (12/Gconst) * AreaPerPackingVolume^2 * (miL/rhoL) * uL; |
---|
512 | |
---|
513 | "Area occupied by the liquid" |
---|
514 | Al = ML*vL/HETP; |
---|
515 | |
---|
516 | "Component Molar Balance" |
---|
517 | diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z; |
---|
518 | |
---|
519 | "Molar Holdup" |
---|
520 | M = ML*OutletLiquid.z + MV*OutletVapour.z; |
---|
521 | |
---|
522 | "Mol Fraction Normalisation" |
---|
523 | sum(OutletLiquid.z)= 1.0; |
---|
524 | |
---|
525 | "Mol Fraction Constraint" |
---|
526 | sum(OutletLiquid.z)= sum(OutletVapour.z); |
---|
527 | |
---|
528 | "Liquid Volume" |
---|
529 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
530 | |
---|
531 | "Vapour Volume" |
---|
532 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
533 | |
---|
534 | "Chemical Equilibrium" |
---|
535 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; |
---|
536 | |
---|
537 | "Thermal Equilibrium" |
---|
538 | OutletVapour.T = OutletLiquid.T; |
---|
539 | |
---|
540 | "Mechanical Equilibrium" |
---|
541 | OutletLiquid.P = OutletVapour.P; |
---|
542 | |
---|
543 | "Liquid Density" |
---|
544 | rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
545 | |
---|
546 | "Vapour Density" |
---|
547 | rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
548 | |
---|
549 | "Liquid viscosity" |
---|
550 | miL = PP.LiquidViscosity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
551 | |
---|
552 | "Volume flow rate of liquid, m^3/m^2/s" |
---|
553 | uL * Al = OutletLiquid.F * vL; |
---|
554 | |
---|
555 | "Pressure Drop" |
---|
556 | deltaP = InletVapour.P - OutletVapour.P; |
---|
557 | |
---|
558 | end |
---|
559 | |
---|
560 | #*------------------------------------- |
---|
561 | * Nonequilibrium Model |
---|
562 | -------------------------------------* |
---|
563 | Model interfaceTeste |
---|
564 | |
---|
565 | ATTRIBUTES |
---|
566 | Pallete = false; |
---|
567 | Icon = "icon/Tray"; |
---|
568 | Brief = "Descrition of variables of the equilibrium interface."; |
---|
569 | Info = |
---|
570 | "This model contains only the variables of the equilibrium interface."; |
---|
571 | |
---|
572 | PARAMETERS |
---|
573 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
574 | outer NComp as Integer; |
---|
575 | outer NC1 as Integer; |
---|
576 | |
---|
577 | VARIABLES |
---|
578 | NL(NComp) as flow_mol_delta (Brief = "Stream Molar Rate on Liquid Phase"); |
---|
579 | NV(NComp) as flow_mol_delta (Brief = "Stream Molar Rate on Vapour Phase"); |
---|
580 | T as temperature (Brief = "Stream Temperature"); |
---|
581 | P as pressure (Brief = "Stream Pressure"); |
---|
582 | x(NComp) as fraction (Brief = "Stream Molar Fraction on Liquid Phase"); |
---|
583 | y(NComp) as fraction (Brief = "Stream Molar Fraction on Vapour Phase"); |
---|
584 | a as area (Brief = "Interface Area"); |
---|
585 | htL as heat_trans_coeff (Brief = "Heat Transference Coefficient on Liquid Phase"); |
---|
586 | htV as heat_trans_coeff (Brief = "Heat Transference Coefficient on Vapour Phase"); |
---|
587 | E_liq as heat_rate (Brief = "Liquid Energy Rate at interface"); |
---|
588 | E_vap as heat_rate (Brief = "Vapour Energy Rate at interface"); |
---|
589 | hL as enth_mol (Brief = "Liquid Molar Enthalpy"); |
---|
590 | hV as enth_mol (Brief = "Vapour Molar Enthalpy"); |
---|
591 | kL(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients"); |
---|
592 | kV(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients"); |
---|
593 | |
---|
594 | EQUATIONS |
---|
595 | "Liquid Enthalpy" |
---|
596 | hL = PP.LiquidEnthalpy(T, P, x); |
---|
597 | |
---|
598 | "Vapour Enthalpy" |
---|
599 | hV = PP.VapourEnthalpy(T, P, y); |
---|
600 | |
---|
601 | end |
---|
602 | |
---|
603 | Model trayRateBasicTeste |
---|
604 | ATTRIBUTES |
---|
605 | Pallete = false; |
---|
606 | Icon = "icon/Tray"; |
---|
607 | Brief = "Basic equations of a tray rate column model."; |
---|
608 | Info = |
---|
609 | "This model contains only the main equations of a column tray nonequilibrium model without |
---|
610 | the hidraulic equations. |
---|
611 | |
---|
612 | == Assumptions == |
---|
613 | * both phases (liquid and vapour) exists all the time; |
---|
614 | * no entrainment of liquid or vapour phase; |
---|
615 | * no weeping; |
---|
616 | * the dymanics in the downcomer are neglected. |
---|
617 | "; |
---|
618 | |
---|
619 | PARAMETERS |
---|
620 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
621 | outer NComp as Integer; |
---|
622 | NC1 as Integer; |
---|
623 | V as volume(Brief="Total Volume of the tray"); |
---|
624 | Q as heat_rate (Brief="Rate of heat supply"); |
---|
625 | Ap as area (Brief="Plate area = Atray - Adowncomer"); |
---|
626 | |
---|
627 | VARIABLES |
---|
628 | in Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}"); |
---|
629 | in InletFV as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}"); |
---|
630 | in InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}"); |
---|
631 | in InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}"); |
---|
632 | out OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}"); |
---|
633 | out OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}"); |
---|
634 | |
---|
635 | M_liq(NComp) as mol (Brief="Liquid Molar Holdup in the tray"); |
---|
636 | M_vap(NComp) as mol (Brief="Vapour Molar Holdup in the tray"); |
---|
637 | ML as mol (Brief="Molar liquid holdup"); |
---|
638 | MV as mol (Brief="Molar vapour holdup"); |
---|
639 | E_liq as energy (Brief="Total Liquid Energy Holdup on tray"); |
---|
640 | E_vap as energy (Brief="Total Vapour Energy Holdup on tray"); |
---|
641 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
642 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
643 | Level as length (Brief="Height of clear liquid on plate"); |
---|
644 | interf as interfaceTeste; |
---|
645 | |
---|
646 | SET |
---|
647 | NC1=NComp-1; |
---|
648 | |
---|
649 | EQUATIONS |
---|
650 | "Component Molar Balance" |
---|
651 | diff(M_liq)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z |
---|
652 | - OutletLiquid.F*OutletLiquid.z + interf.NL; |
---|
653 | |
---|
654 | diff(M_vap)=InletFV.F*InletFV.z + InletVapour.F*InletVapour.z |
---|
655 | - OutletVapour.F*OutletVapour.z - interf.NV; |
---|
656 | |
---|
657 | "Energy Balance" |
---|
658 | diff(E_liq) = Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h |
---|
659 | - OutletLiquid.F*OutletLiquid.h + Q + interf.E_liq; |
---|
660 | |
---|
661 | diff(E_vap) = InletFV.F*InletFV.h + InletVapour.F*InletVapour.h |
---|
662 | - OutletVapour.F*OutletVapour.h - interf.E_vap; |
---|
663 | |
---|
664 | "Molar Holdup" |
---|
665 | M_liq = ML*OutletLiquid.z; |
---|
666 | |
---|
667 | M_vap = MV*OutletVapour.z; |
---|
668 | |
---|
669 | "Energy Holdup" |
---|
670 | E_liq = ML*(OutletLiquid.h - OutletLiquid.P*vL); |
---|
671 | |
---|
672 | E_vap = MV*(OutletVapour.h - OutletVapour.P*vV); |
---|
673 | |
---|
674 | "Energy Rate through the interface" |
---|
675 | interf.E_liq = interf.htL*interf.a*(interf.T-OutletLiquid.T)+sum(interf.NL)*interf.hL; |
---|
676 | |
---|
677 | interf.E_vap = interf.htV*interf.a*(OutletVapour.T-interf.T)+sum(interf.NV)*interf.hV; |
---|
678 | |
---|
679 | "Mass Conservation" |
---|
680 | interf.NL = interf.NV; |
---|
681 | |
---|
682 | "Energy Conservation" |
---|
683 | interf.E_liq = interf.E_vap; |
---|
684 | |
---|
685 | "Mol fraction normalisation" |
---|
686 | sum(OutletLiquid.z)= 1.0; |
---|
687 | sum(OutletLiquid.z)= sum(OutletVapour.z); |
---|
688 | sum(interf.x)=1.0; |
---|
689 | sum(interf.x)=sum(interf.y); |
---|
690 | |
---|
691 | "Liquid Volume" |
---|
692 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
693 | "Vapour Volume" |
---|
694 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
695 | |
---|
696 | "Chemical Equilibrium" |
---|
697 | PP.LiquidFugacityCoefficient(interf.T, interf.P, interf.x)*interf.x = |
---|
698 | PP.VapourFugacityCoefficient(interf.T, interf.P, interf.y)*interf.y; |
---|
699 | |
---|
700 | "Geometry Constraint" |
---|
701 | V = ML*vL + MV*vV; |
---|
702 | |
---|
703 | "Level of clear liquid over the weir" |
---|
704 | Level = ML*vL/Ap; |
---|
705 | |
---|
706 | "Total Mass Transfer Rates" |
---|
707 | interf.NL(1:NC1)=interf.a*sumt(interf.kL*(interf.x(1:NC1)-OutletLiquid.z(1:NC1)))/vL+ |
---|
708 | OutletLiquid.z(1:NC1)*sum(interf.NL); |
---|
709 | |
---|
710 | # interf.NL(1:NC1)=0.01*'kmol/s'; |
---|
711 | |
---|
712 | interf.NV(1:NC1)=interf.a*sumt(interf.kV*(OutletVapour.z(1:NC1)-interf.y(1:NC1)))/vV+ |
---|
713 | OutletVapour.z(1:NC1)*sum(interf.NV); |
---|
714 | |
---|
715 | "Mechanical Equilibrium" |
---|
716 | OutletVapour.P = OutletLiquid.P; |
---|
717 | interf.P=OutletLiquid.P; |
---|
718 | end |
---|
719 | |
---|
720 | Model trayRateTeste as trayRateBasicTeste |
---|
721 | ATTRIBUTES |
---|
722 | Pallete = false; |
---|
723 | Icon = "icon/Tray"; |
---|
724 | Brief = "Complete rate model of a column tray."; |
---|
725 | Info = |
---|
726 | "== Specify == |
---|
727 | * the Feed stream |
---|
728 | * the Liquid inlet stream |
---|
729 | * the Vapour inlet stream |
---|
730 | * the Vapour outlet flow (OutletVapour.F) |
---|
731 | |
---|
732 | == Initial == |
---|
733 | * the plate temperature of both phases (OutletLiquid.T and OutletVapour.T) |
---|
734 | * the liquid height (Level) OR the liquid flow holdup (ML) |
---|
735 | * the vapor holdup (MV) |
---|
736 | * (NoComps - 1) OutletLiquid compositions |
---|
737 | "; |
---|
738 | |
---|
739 | PARAMETERS |
---|
740 | Ah as area (Brief="Total holes area"); |
---|
741 | lw as length (Brief="Weir length"); |
---|
742 | g as acceleration (Default=9.81); |
---|
743 | hw as length (Brief="Weir height"); |
---|
744 | beta as fraction (Brief="Aeration fraction"); |
---|
745 | alfa as fraction (Brief="Dry pressure drop coefficient"); |
---|
746 | |
---|
747 | VapourFlow as Switcher(Valid = ["on", "off"], Default = "on"); |
---|
748 | LiquidFlow as Switcher(Valid = ["on", "off"], Default = "on"); |
---|
749 | |
---|
750 | VARIABLES |
---|
751 | rhoL as dens_mass; |
---|
752 | rhoV as dens_mass; |
---|
753 | |
---|
754 | EQUATIONS |
---|
755 | "Liquid Density" |
---|
756 | rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
757 | "Vapour Density" |
---|
758 | rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
759 | |
---|
760 | switch LiquidFlow |
---|
761 | case "on": |
---|
762 | "Francis Equation" |
---|
763 | # OutletLiquid.F*vL = 1.84*'m^0.5/s'*lw*((Level-(beta*hw))/(beta))^1.5; |
---|
764 | OutletLiquid.F*vL = 1.84*'1/s'*lw*((Level-(beta*hw))/(beta))^2; |
---|
765 | when Level < (beta * hw) switchto "off"; |
---|
766 | |
---|
767 | case "off": |
---|
768 | "Low level" |
---|
769 | OutletLiquid.F = 0 * 'mol/h'; |
---|
770 | when Level > (beta * hw) + 1e-6*'m' switchto "on"; |
---|
771 | end |
---|
772 | |
---|
773 | switch VapourFlow |
---|
774 | case "on": |
---|
775 | InletVapour.F*vV = sqrt((InletVapour.P - OutletVapour.P)/(rhoV*alfa))*Ah; |
---|
776 | when InletVapour.F < 1e-6 * 'kmol/h' switchto "off"; |
---|
777 | |
---|
778 | case "off": |
---|
779 | InletVapour.F = 0 * 'mol/s'; |
---|
780 | when InletVapour.P > OutletVapour.P + Level*g*rhoL + 1e-1 * 'atm' switchto "on"; |
---|
781 | end |
---|
782 | end |
---|
783 | |
---|
784 | *# |
---|