source: branches/gui/eml/stage_separators/tray.mso @ 873

Last change on this file since 873 was 873, checked in by gerson bicca, 14 years ago

revised packed column

File size: 20.1 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*----------------------------------------------------------------------
16* Author: Paula B. Staudt
17* $Id: tray.mso 522 2008-05-21 23:21:12Z arge $
18*--------------------------------------------------------------------*#
19
20using "streams";
21
22Model trayBasic
23        ATTRIBUTES
24        Pallete         = false;
25        Icon            = "icon/Tray";
26        Brief           = "Basic equations of a tray column model.";
27        Info            =
28"This model contains only the main equations of a column tray equilibrium model without
29the hidraulic equations.
30       
31== Assumptions ==
32* both phases (liquid and vapour) exists all the time;
33* thermodymanic equilibrium with Murphree plate efficiency;
34* no entrainment of liquid or vapour phase;
35* no weeping;
36* the dymanics in the downcomer are neglected.
37";
38       
39PARAMETERS
40outer PP                        as Plugin               (Brief = "External Physical Properties", Type="PP");
41outer NComp     as Integer;
42
43VARIABLES
44
45        Inlet                                                   as stream                               (Brief="Feed stream", Hidden=true, PosX=0, PosY=0.4932, Symbol="_{in}");
46        LiquidSideStream                as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
47        VapourSideStream        as vapour_stream        (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
48
49in      InletLiquid                     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
50in      InletVapour                     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
51out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
52out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
53
54
55        M(NComp)                        as mol                          (Brief="Molar Holdup in the tray");
56        ML                                              as mol                          (Brief="Molar liquid holdup");
57        MV                                              as mol                          (Brief="Molar vapour holdup");
58        E                                                       as energy                       (Brief="Total Energy Holdup on tray");
59        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
60        vV                                              as volume_mol   (Brief="Vapour Molar volume");
61        Level                                   as length                       (Brief="Height of clear liquid on plate");
62        yideal(NComp)           as fraction;
63
64
65EQUATIONS
66"Component Molar Balance"
67        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z-
68        LiquidSideStream.F*LiquidSideStream.z-VapourSideStream.F*VapourSideStream.z;
69
70"Molar Holdup"
71        M = ML*OutletLiquid.z + MV*OutletVapour.z;
72
73"Mol fraction normalisation"
74        sum(OutletLiquid.z)= 1.0;
75        sum(OutletLiquid.z)= sum(OutletVapour.z);
76
77"Liquid Volume"
78        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
79
80"Vapour Volume"
81        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
82
83"Chemical Equilibrium"
84        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
85
86"Thermal Equilibrium"
87        OutletVapour.T = OutletLiquid.T;
88
89"Mechanical Equilibrium"
90        OutletVapour.P = OutletLiquid.P;
91       
92"Thermal Equilibrium Vapour Side Stream"
93        OutletVapour.T = VapourSideStream.T;
94
95"Thermal Equilibrium Liquid Side Stream"
96        OutletLiquid.T = LiquidSideStream.T;
97
98"Mechanical Equilibrium Vapour Side Stream"
99        OutletVapour.P= VapourSideStream.P;
100
101"Mechanical Equilibrium Liquid Side Stream"
102        OutletLiquid.P = LiquidSideStream.P;
103
104"Composition Liquid Side Stream"
105        OutletLiquid.z= LiquidSideStream.z;
106       
107"Composition Vapour Side Stream"
108        OutletVapour.z= VapourSideStream.z;
109
110end
111
112Model tray as trayBasic
113        ATTRIBUTES
114        Pallete         = false;
115        Icon            = "icon/Tray";
116        Brief           = "Complete model of a column tray.";
117        Info            =
118"== Specify ==
119* the Feed stream
120* the Liquid inlet stream
121* the Vapour inlet stream
122* the Vapour outlet flow (OutletVapour.F)
123       
124== Initial ==
125* the plate temperature (OutletLiquid.T)
126* the liquid height (Level) OR the liquid flow OutletLiquid.F
127* (NoComps - 1) OutletLiquid compositions
128
129== Options ==
130You can choose the equation for the liquid outlet flow and the vapour
131inlet flow calculation through the VapourFlowModel and LiquidFlowModel
132switchers.
133
134== References ==
135* ELGUE, S.; PRAT, L.; CABASSUD, M.; LANN, J. L.; CéZERAC, J. Dynamic models for start-up operations of batch distillation columns with experimental validation. Computers and Chemical Engineering, v. 28, p. 2735-2747, 2004.
136* FEEHERY, W. F. Dynamic Optimization with Path Constraints. Tese (Doutorado) - Massachusetts Institute of Technology, June 1998.
137* KLINGBERG, A. Modeling and Optimization of Batch Distillation. Dissertação (Mestrado) - Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, fev. 2000.
138* OLSEN, I.; ENDRESTOL, G. O.; SIRA, T. A rigorous and efficient distillation column model for engineering and training simulators. Computers and Chemical Engineering,v. 21, n. Suppl, p. S193-S198, 1997.
139* REEPMEYER, F.; REPKE, J.-U.; WOZNY, G. Analysis of the start-up process for reactive distillation. Chemical Engineering Technology, v. 26, p. 81-86, 2003.
140* ROFFEL, B.; BETLEM, B.; RUIJTER, J. de. First principles dynamic modeling and multivariable control of a cryogenic distillation column process. Computers and Chemical Engineering, v. 24, p. 111-123, 2000.
141* WANG, L.; LI, P.; WOZNY, G.; WANG, S. A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemical Engineering, v. 27, p.1485-1497, 2003.
142";     
143
144VARIABLES
145        rhoL as dens_mass;
146        rhoV as dens_mass;
147
148EQUATIONS
149
150"Liquid Density"
151        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
152       
153"Vapour Density"
154        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
155
156end
157
158#*-------------------------------------------------------------------
159* Model of a tray with reaction
160*-------------------------------------------------------------------*#
161Model trayReac
162        ATTRIBUTES
163        Pallete         = false;
164        Icon            = "icon/Tray";
165        Brief           = "Model of a tray with reaction.";
166        Info            =
167"== Assumptions ==
168* both phases (liquid and vapour) exists all the time;
169* thermodymanic equilibrium with Murphree plate efficiency;
170* no entrainment of liquid or vapour phase;
171* no weeping;
172* the dymanics in the downcomer are neglected.
173       
174== Specify ==
175* the Feed stream;
176* the Liquid inlet stream;
177* the Vapour inlet stream;
178* the Vapour outlet flow (OutletVapour.F);
179* the reaction related variables.
180       
181== Initial ==
182* the plate temperature (OutletLiquid.T)
183* the liquid height (Level) OR the liquid flow OutletLiquid.F
184* (NoComps - 1) OutletLiquid compositions
185";
186
187PARAMETERS
188
189        outer PP                        as Plugin(Type="PP");
190        outer NComp     as Integer;
191       
192VARIABLES
193
194        Inlet                                           as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
195        LiquidSideStream        as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
196        VapourSideStream as vapour_stream       (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
197       
198
199in              InletLiquid             as      stream                          (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
200in              InletVapour             as      stream                          (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
201out     OutletLiquid    as      liquid_stream           (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
202out     OutletVapour    as      vapour_stream   (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
203
204        yideal(NComp)   as fraction;
205
206        M(NComp)                as mol                          (Brief="Molar Holdup in the tray");
207        ML                                              as mol                          (Brief="Molar liquid holdup");
208        MV                                              as mol                          (Brief="Molar vapour holdup");
209        E                                               as energy                       (Brief="Total Energy Holdup on tray");
210        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
211        vV                                              as volume_mol   (Brief="Vapour Molar volume");
212        Level                                   as length                       (Brief="Height of clear liquid on plate");
213        Vol                                             as volume;
214       
215        rhoL                    as dens_mass;
216        rhoV                    as dens_mass;
217        r3                              as reaction_mol         (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s');
218        C(NComp)        as conc_mol             (Brief = "Molar concentration", Lower = -1);
219       
220EQUATIONS
221
222"Molar Concentration"
223        OutletLiquid.z = vL * C;
224       
225"Reaction"
226        r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4))*'l/mol/s';
227       
228"Molar Holdup"
229        M = ML*OutletLiquid.z + MV*OutletVapour.z;
230
231"Thermal Equilibrium Vapour Side Stream"
232        OutletVapour.T = VapourSideStream.T;
233
234"Thermal Equilibrium Liquid Side Stream"
235        OutletLiquid.T = LiquidSideStream.T;
236
237"Mechanical Equilibrium Vapour Side Stream"
238        OutletVapour.P= VapourSideStream.P;
239
240"Mechanical Equilibrium Liquid Side Stream"
241        OutletLiquid.P = LiquidSideStream.P;
242
243"Composition Liquid Side Stream"
244        OutletLiquid.z= LiquidSideStream.z;
245       
246"Composition Vapour Side Stream"
247        OutletVapour.z= VapourSideStream.z;
248
249"Mol fraction normalisation"
250        sum(OutletLiquid.z)= 1.0;
251
252"Liquid Volume"
253        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
254
255"Vapour Volume"
256        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
257
258"Thermal Equilibrium"
259        OutletVapour.T = OutletLiquid.T;
260
261"Mechanical Equilibrium"
262        OutletVapour.P = OutletLiquid.P;
263
264        Vol = ML*vL;
265       
266"Liquid Density"
267        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
268
269"Vapour Density"
270        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
271
272"Chemical Equilibrium"
273        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
274
275        sum(OutletLiquid.z)= sum(OutletVapour.z);
276
277end
278
279#*-------------------------------------
280* Model of a packed column stage
281-------------------------------------*#
282Model packedStage
283        ATTRIBUTES
284        Pallete         = false;
285        Icon            = "icon/PackedStage";
286        Brief           = "Complete model of a packed column stage.";
287        Info            =
288"== Specify ==
289* the Feed stream
290* the Liquid inlet stream
291* the Vapour inlet stream
292* the stage pressure drop (deltaP)
293       
294== Initial ==
295* the plate temperature (OutletLiquid.T)
296* the liquid molar holdup ML
297* (NoComps - 1) OutletLiquid compositions
298";     
299       
300PARAMETERS
301
302outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
303outer NComp as Integer;
304
305        Mw(NComp)       as molweight    (Brief = "Component Mol Weight");
306       
307VARIABLES
308
309        Inlet                   as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
310in      InletLiquid                     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
311in      InletVapour                     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
312out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
313out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
314
315        M(NComp) as mol (Brief="Molar Holdup in the tray", Default=0.01, Lower=0, Upper=100);
316        ML as mol (Brief="Molar liquid holdup", Default=0.01, Lower=0, Upper=100);
317        MV as mol (Brief="Molar vapour holdup", Default=0.01, Lower=0, Upper=100);
318        E as energy (Brief="Total Energy Holdup on tray", Default=-500);
319        vL as volume_mol (Brief="Liquid Molar Volume");
320        vV as volume_mol (Brief="Vapour Molar volume");
321       
322        miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s');
323        rhoL as dens_mass;
324        rhoV as dens_mass;
325       
326        deltaP as pressure;
327       
328        uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Lower=-10, Upper=1000);
329        uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Lower=-10, Upper=1000);
330        Al as area (Brief="Area occupied by the liquid", Default=0.001, Upper=10);
331        hl as positive (Brief="Column holdup", Unit='m^3/m^3', Default=0.01,Upper=10);
332
333SET
334        Mw = PP.MolecularWeight();
335
336EQUATIONS
337
338"Component Molar Balance"
339        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z;
340
341"Molar Holdup"
342        M = ML*OutletLiquid.z + MV*OutletVapour.z;
343       
344"Mol Fraction Normalisation"
345        sum(OutletLiquid.z)= 1.0;
346
347"Mol Fraction Constraint"
348        sum(OutletLiquid.z)= sum(OutletVapour.z);
349       
350"Liquid Volume"
351        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
352
353"Vapour Volume"
354        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
355       
356"Chemical Equilibrium"
357        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z;
358       
359"Thermal Equilibrium"
360        OutletVapour.T = OutletLiquid.T;
361       
362"Mechanical Equilibrium"
363        OutletLiquid.P = OutletVapour.P;
364       
365"Liquid Density"
366        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
367
368"Vapour Density"
369        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
370
371"Liquid viscosity"
372        miL = PP.LiquidViscosity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
373
374"Volume flow rate of liquid, m^3/m^2/s"
375        uL * Al = OutletLiquid.F * vL;
376       
377"Pressure Drop"
378        deltaP = InletVapour.P - OutletVapour.P;
379
380end
381
382#*-------------------------------------
383* Nonequilibrium Model
384-------------------------------------*
385Model interfaceTeste
386       
387        ATTRIBUTES
388        Pallete         = false;
389        Icon            = "icon/Tray";
390        Brief           = "Descrition of variables of the equilibrium interface.";
391        Info            =
392"This model contains only the variables of the equilibrium interface.";
393
394        PARAMETERS
395outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
396outer NComp as Integer;
397outer NC1 as Integer;
398       
399        VARIABLES
400        NL(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Liquid Phase");
401        NV(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Vapour Phase");
402        T as temperature                (Brief = "Stream Temperature");
403        P as pressure                   (Brief = "Stream Pressure");
404        x(NComp) as fraction    (Brief = "Stream Molar Fraction on Liquid Phase");
405        y(NComp) as fraction    (Brief = "Stream Molar Fraction on Vapour Phase");
406        a as area                           (Brief = "Interface Area");
407        htL as heat_trans_coeff (Brief = "Heat Transference Coefficient on Liquid Phase");
408        htV as heat_trans_coeff (Brief = "Heat Transference Coefficient on Vapour Phase");     
409        E_liq as heat_rate      (Brief = "Liquid Energy Rate at interface");
410    E_vap as heat_rate      (Brief = "Vapour Energy Rate at interface");       
411        hL as enth_mol          (Brief = "Liquid Molar Enthalpy");
412        hV as enth_mol          (Brief = "Vapour Molar Enthalpy");
413        kL(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
414        kV(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
415       
416        EQUATIONS
417        "Liquid Enthalpy"
418        hL = PP.LiquidEnthalpy(T, P, x);
419       
420        "Vapour Enthalpy"
421        hV = PP.VapourEnthalpy(T, P, y);
422
423end
424
425Model trayRateBasicTeste
426        ATTRIBUTES
427        Pallete         = false;
428        Icon            = "icon/Tray";
429        Brief           = "Basic equations of a tray rate column model.";
430        Info            =
431"This model contains only the main equations of a column tray nonequilibrium model without
432the hidraulic equations.
433       
434== Assumptions ==
435* both phases (liquid and vapour) exists all the time;
436* no entrainment of liquid or vapour phase;
437* no weeping;
438* the dymanics in the downcomer are neglected.
439";
440       
441        PARAMETERS
442outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
443outer NComp as Integer;
444    NC1 as Integer;
445        V as volume(Brief="Total Volume of the tray");
446        Q as heat_rate (Brief="Rate of heat supply");
447        Ap as area (Brief="Plate area = Atray - Adowncomer");
448       
449        VARIABLES
450in      Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
451in      InletFV as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
452in      InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
453in      InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
454out     OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
455out     OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
456
457        M_liq(NComp) as mol (Brief="Liquid Molar Holdup in the tray");
458        M_vap(NComp) as mol (Brief="Vapour Molar Holdup in the tray");
459        ML as mol (Brief="Molar liquid holdup");
460        MV as mol (Brief="Molar vapour holdup");
461        E_liq as energy (Brief="Total Liquid Energy Holdup on tray");
462        E_vap as energy (Brief="Total Vapour Energy Holdup on tray");
463        vL as volume_mol (Brief="Liquid Molar Volume");
464        vV as volume_mol (Brief="Vapour Molar volume");
465        Level as length (Brief="Height of clear liquid on plate");
466        interf as interfaceTeste;       
467
468        SET   
469        NC1=NComp-1;
470
471        EQUATIONS
472        "Component Molar Balance"
473        diff(M_liq)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z
474        - OutletLiquid.F*OutletLiquid.z + interf.NL;
475       
476        diff(M_vap)=InletFV.F*InletFV.z + InletVapour.F*InletVapour.z
477        - OutletVapour.F*OutletVapour.z - interf.NV;
478       
479        "Energy Balance"
480        diff(E_liq) = Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h
481                - OutletLiquid.F*OutletLiquid.h  + Q + interf.E_liq;
482       
483        diff(E_vap) = InletFV.F*InletFV.h + InletVapour.F*InletVapour.h
484                - OutletVapour.F*OutletVapour.h  - interf.E_vap;
485       
486        "Molar Holdup"
487        M_liq = ML*OutletLiquid.z;
488       
489        M_vap = MV*OutletVapour.z;
490       
491        "Energy Holdup"
492        E_liq = ML*(OutletLiquid.h - OutletLiquid.P*vL);
493       
494        E_vap = MV*(OutletVapour.h - OutletVapour.P*vV);
495       
496        "Energy Rate through the interface"
497        interf.E_liq = interf.htL*interf.a*(interf.T-OutletLiquid.T)+sum(interf.NL)*interf.hL; 
498       
499        interf.E_vap = interf.htV*interf.a*(OutletVapour.T-interf.T)+sum(interf.NV)*interf.hV;
500       
501        "Mass Conservation"
502        interf.NL = interf.NV;
503       
504        "Energy Conservation"
505        interf.E_liq = interf.E_vap;
506       
507        "Mol fraction normalisation"
508        sum(OutletLiquid.z)= 1.0;
509        sum(OutletLiquid.z)= sum(OutletVapour.z);
510        sum(interf.x)=1.0;
511        sum(interf.x)=sum(interf.y);
512       
513        "Liquid Volume"
514        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
515        "Vapour Volume"
516        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
517       
518        "Chemical Equilibrium"
519        PP.LiquidFugacityCoefficient(interf.T, interf.P, interf.x)*interf.x =
520                PP.VapourFugacityCoefficient(interf.T, interf.P, interf.y)*interf.y;
521
522        "Geometry Constraint"
523        V = ML*vL + MV*vV;
524       
525        "Level of clear liquid over the weir"
526        Level = ML*vL/Ap;
527
528        "Total Mass Transfer Rates"
529        interf.NL(1:NC1)=interf.a*sumt(interf.kL*(interf.x(1:NC1)-OutletLiquid.z(1:NC1)))/vL+
530                OutletLiquid.z(1:NC1)*sum(interf.NL);
531
532#       interf.NL(1:NC1)=0.01*'kmol/s';
533       
534        interf.NV(1:NC1)=interf.a*sumt(interf.kV*(OutletVapour.z(1:NC1)-interf.y(1:NC1)))/vV+
535                OutletVapour.z(1:NC1)*sum(interf.NV);
536
537        "Mechanical Equilibrium"
538        OutletVapour.P = OutletLiquid.P;
539        interf.P=OutletLiquid.P;
540end
541
542Model trayRateTeste as trayRateBasicTeste
543        ATTRIBUTES
544        Pallete         = false;
545        Icon            = "icon/Tray";
546        Brief           = "Complete rate model of a column tray.";
547        Info            =
548"== Specify ==
549* the Feed stream
550* the Liquid inlet stream
551* the Vapour inlet stream
552* the Vapour outlet flow (OutletVapour.F)
553       
554== Initial ==
555* the plate temperature of both phases (OutletLiquid.T and OutletVapour.T)
556* the liquid height (Level) OR the liquid flow holdup (ML)
557* the vapor holdup (MV)
558* (NoComps - 1) OutletLiquid compositions
559";
560
561        PARAMETERS
562        Ah as area (Brief="Total holes area");
563        lw as length (Brief="Weir length");
564        g as acceleration (Default=9.81);
565        hw as length (Brief="Weir height");
566        beta as fraction (Brief="Aeration fraction");
567        alfa as fraction (Brief="Dry pressure drop coefficient");
568       
569        VapourFlow as Switcher(Valid = ["on", "off"], Default = "on");
570        LiquidFlow as Switcher(Valid = ["on", "off"], Default = "on");
571       
572        VARIABLES
573        rhoL as dens_mass;
574        rhoV as dens_mass;
575
576        EQUATIONS
577        "Liquid Density"
578        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
579        "Vapour Density"
580        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
581
582        switch LiquidFlow
583                case "on":
584                "Francis Equation"
585#               OutletLiquid.F*vL = 1.84*'m^0.5/s'*lw*((Level-(beta*hw))/(beta))^1.5;
586                OutletLiquid.F*vL = 1.84*'1/s'*lw*((Level-(beta*hw))/(beta))^2;
587                when Level < (beta * hw) switchto "off";
588               
589                case "off":
590                "Low level"
591                OutletLiquid.F = 0 * 'mol/h';
592                when Level > (beta * hw) + 1e-6*'m' switchto "on";
593        end
594
595        switch VapourFlow
596                case "on":
597                InletVapour.F*vV = sqrt((InletVapour.P - OutletVapour.P)/(rhoV*alfa))*Ah;
598                when InletVapour.F < 1e-6 * 'kmol/h' switchto "off";
599               
600                case "off":
601                InletVapour.F = 0 * 'mol/s';
602                when InletVapour.P > OutletVapour.P + Level*g*rhoL + 1e-1 * 'atm' switchto "on";
603        end     
604end
605
606*#
Note: See TracBrowser for help on using the repository browser.