source: branches/gui/eml/stage_separators/tray.mso @ 849

Last change on this file since 849 was 849, checked in by mamuller, 13 years ago

fixing packed column model

File size: 22.5 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*----------------------------------------------------------------------
16* Author: Paula B. Staudt
17* $Id: tray.mso 522 2008-05-21 23:21:12Z arge $
18*--------------------------------------------------------------------*#
19
20using "streams";
21
22Model trayBasic
23        ATTRIBUTES
24        Pallete         = false;
25        Icon            = "icon/Tray";
26        Brief           = "Basic equations of a tray column model.";
27        Info            =
28"This model contains only the main equations of a column tray equilibrium model without
29the hidraulic equations.
30       
31== Assumptions ==
32* both phases (liquid and vapour) exists all the time;
33* thermodymanic equilibrium with Murphree plate efficiency;
34* no entrainment of liquid or vapour phase;
35* no weeping;
36* the dymanics in the downcomer are neglected.
37";
38       
39PARAMETERS
40outer PP                        as Plugin               (Brief = "External Physical Properties", Type="PP");
41outer NComp     as Integer;
42
43VARIABLES
44
45        Inlet                                                   as stream                               (Brief="Feed stream", Hidden=true, PosX=0, PosY=0.4932, Symbol="_{in}");
46        LiquidSideStream                as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
47        VapourSideStream        as vapour_stream        (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
48
49in      InletLiquid                     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
50in      InletVapour                     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
51out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
52out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
53
54
55        M(NComp)                        as mol                          (Brief="Molar Holdup in the tray");
56        ML                                              as mol                          (Brief="Molar liquid holdup");
57        MV                                              as mol                          (Brief="Molar vapour holdup");
58        E                                                       as energy                       (Brief="Total Energy Holdup on tray");
59        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
60        vV                                              as volume_mol   (Brief="Vapour Molar volume");
61        Level                                   as length                       (Brief="Height of clear liquid on plate");
62        yideal(NComp)           as fraction;
63
64
65EQUATIONS
66"Component Molar Balance"
67        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z-
68        LiquidSideStream.F*LiquidSideStream.z-VapourSideStream.F*VapourSideStream.z;
69
70"Molar Holdup"
71        M = ML*OutletLiquid.z + MV*OutletVapour.z;
72
73"Mol fraction normalisation"
74        sum(OutletLiquid.z)= 1.0;
75        sum(OutletLiquid.z)= sum(OutletVapour.z);
76
77"Liquid Volume"
78        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
79
80"Vapour Volume"
81        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
82
83"Chemical Equilibrium"
84        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
85
86"Thermal Equilibrium"
87        OutletVapour.T = OutletLiquid.T;
88
89"Mechanical Equilibrium"
90        OutletVapour.P = OutletLiquid.P;
91       
92"Thermal Equilibrium Vapour Side Stream"
93        OutletVapour.T = VapourSideStream.T;
94
95"Thermal Equilibrium Liquid Side Stream"
96        OutletLiquid.T = LiquidSideStream.T;
97
98"Mechanical Equilibrium Vapour Side Stream"
99        OutletVapour.P= VapourSideStream.P;
100
101"Mechanical Equilibrium Liquid Side Stream"
102        OutletLiquid.P = LiquidSideStream.P;
103
104"Composition Liquid Side Stream"
105        OutletLiquid.z= LiquidSideStream.z;
106       
107"Composition Vapour Side Stream"
108        OutletVapour.z= VapourSideStream.z;
109
110end
111
112Model tray as trayBasic
113        ATTRIBUTES
114        Pallete         = false;
115        Icon            = "icon/Tray";
116        Brief           = "Complete model of a column tray.";
117        Info            =
118"== Specify ==
119* the Feed stream
120* the Liquid inlet stream
121* the Vapour inlet stream
122* the Vapour outlet flow (OutletVapour.F)
123       
124== Initial ==
125* the plate temperature (OutletLiquid.T)
126* the liquid height (Level) OR the liquid flow OutletLiquid.F
127* (NoComps - 1) OutletLiquid compositions
128
129== Options ==
130You can choose the equation for the liquid outlet flow and the vapour
131inlet flow calculation through the VapourFlowModel and LiquidFlowModel
132switchers.
133
134== References ==
135* ELGUE, S.; PRAT, L.; CABASSUD, M.; LANN, J. L.; CéZERAC, J. Dynamic models for start-up operations of batch distillation columns with experimental validation. Computers and Chemical Engineering, v. 28, p. 2735-2747, 2004.
136* FEEHERY, W. F. Dynamic Optimization with Path Constraints. Tese (Doutorado) - Massachusetts Institute of Technology, June 1998.
137* KLINGBERG, A. Modeling and Optimization of Batch Distillation. Dissertação (Mestrado) - Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, fev. 2000.
138* OLSEN, I.; ENDRESTOL, G. O.; SIRA, T. A rigorous and efficient distillation column model for engineering and training simulators. Computers and Chemical Engineering,v. 21, n. Suppl, p. S193-S198, 1997.
139* REEPMEYER, F.; REPKE, J.-U.; WOZNY, G. Analysis of the start-up process for reactive distillation. Chemical Engineering Technology, v. 26, p. 81-86, 2003.
140* ROFFEL, B.; BETLEM, B.; RUIJTER, J. de. First principles dynamic modeling and multivariable control of a cryogenic distillation column process. Computers and Chemical Engineering, v. 24, p. 111-123, 2000.
141* WANG, L.; LI, P.; WOZNY, G.; WANG, S. A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemical Engineering, v. 27, p.1485-1497, 2003.
142";     
143
144VARIABLES
145        rhoL as dens_mass;
146        rhoV as dens_mass;
147
148EQUATIONS
149
150"Liquid Density"
151        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
152       
153"Vapour Density"
154        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
155
156end
157
158#*-------------------------------------------------------------------
159* Model of a tray with reaction
160*-------------------------------------------------------------------*#
161Model trayReac
162        ATTRIBUTES
163        Pallete         = false;
164        Icon            = "icon/Tray";
165        Brief           = "Model of a tray with reaction.";
166        Info            =
167"== Assumptions ==
168* both phases (liquid and vapour) exists all the time;
169* thermodymanic equilibrium with Murphree plate efficiency;
170* no entrainment of liquid or vapour phase;
171* no weeping;
172* the dymanics in the downcomer are neglected.
173       
174== Specify ==
175* the Feed stream;
176* the Liquid inlet stream;
177* the Vapour inlet stream;
178* the Vapour outlet flow (OutletVapour.F);
179* the reaction related variables.
180       
181== Initial ==
182* the plate temperature (OutletLiquid.T)
183* the liquid height (Level) OR the liquid flow OutletLiquid.F
184* (NoComps - 1) OutletLiquid compositions
185";
186
187PARAMETERS
188
189        outer PP                        as Plugin(Type="PP");
190        outer NComp     as Integer;
191       
192VARIABLES
193
194        Inlet                                           as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
195        LiquidSideStream        as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
196        VapourSideStream as vapour_stream       (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
197       
198
199in              InletLiquid             as      stream                          (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
200in              InletVapour             as      stream                          (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
201out     OutletLiquid    as      liquid_stream           (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
202out     OutletVapour    as      vapour_stream   (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
203
204        yideal(NComp)   as fraction;
205
206        M(NComp)                as mol                          (Brief="Molar Holdup in the tray");
207        ML                                              as mol                          (Brief="Molar liquid holdup");
208        MV                                              as mol                          (Brief="Molar vapour holdup");
209        E                                               as energy                       (Brief="Total Energy Holdup on tray");
210        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
211        vV                                              as volume_mol   (Brief="Vapour Molar volume");
212        Level                                   as length                       (Brief="Height of clear liquid on plate");
213        Vol                                             as volume;
214       
215        rhoL                    as dens_mass;
216        rhoV                    as dens_mass;
217        r3                              as reaction_mol         (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s');
218        C(NComp)        as conc_mol             (Brief = "Molar concentration", Lower = -1);
219       
220EQUATIONS
221
222"Molar Concentration"
223        OutletLiquid.z = vL * C;
224       
225"Reaction"
226        r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4))*'l/mol/s';
227       
228"Molar Holdup"
229        M = ML*OutletLiquid.z + MV*OutletVapour.z;
230
231"Thermal Equilibrium Vapour Side Stream"
232        OutletVapour.T = VapourSideStream.T;
233
234"Thermal Equilibrium Liquid Side Stream"
235        OutletLiquid.T = LiquidSideStream.T;
236
237"Mechanical Equilibrium Vapour Side Stream"
238        OutletVapour.P= VapourSideStream.P;
239
240"Mechanical Equilibrium Liquid Side Stream"
241        OutletLiquid.P = LiquidSideStream.P;
242
243"Composition Liquid Side Stream"
244        OutletLiquid.z= LiquidSideStream.z;
245       
246"Composition Vapour Side Stream"
247        OutletVapour.z= VapourSideStream.z;
248
249"Mol fraction normalisation"
250        sum(OutletLiquid.z)= 1.0;
251
252"Liquid Volume"
253        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
254
255"Vapour Volume"
256        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
257
258"Thermal Equilibrium"
259        OutletVapour.T = OutletLiquid.T;
260
261"Mechanical Equilibrium"
262        OutletVapour.P = OutletLiquid.P;
263
264        Vol = ML*vL;
265       
266"Liquid Density"
267        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
268
269"Vapour Density"
270        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
271
272"Chemical Equilibrium"
273        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
274
275        sum(OutletLiquid.z)= sum(OutletVapour.z);
276
277end
278
279#*-------------------------------------
280* Model of a packed column stage
281-------------------------------------*#
282Model packedStage
283        ATTRIBUTES
284        Pallete         = false;
285        Icon            = "icon/PackedStage";
286        Brief           = "Complete model of a packed column stage.";
287        Info            =
288"== Specify ==
289* the Feed stream
290* the Liquid inlet stream
291* the Vapour inlet stream
292* the stage pressure drop (deltaP)
293       
294== Initial ==
295* the plate temperature (OutletLiquid.T)
296* the liquid molar holdup ML
297* (NoComps - 1) OutletLiquid compositions
298";     
299       
300       
301PARAMETERS
302
303outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
304outer NComp as Integer;
305#*     
306outer ColumnDiameter            as length               (Brief="Column diameter");
307outer AreaPerPackingVol as Real (Brief="Surface area per packing volume", Unit='m^2/m^3');
308outer VoidFraction as fraction (Brief="Void fraction of packing, m^3/m^3");
309outer hs as length (Brief="Height of the packing stage");
310outer ResistanceCoeff as positive (Brief="Resistance coefficient on the liquid load", Default = 0.6);
311*#
312        ColumnDiameter          as length               (Brief="Column diameter");
313        AreaPerPackingVol as Real (Brief="Surface area per packing volume", Unit='m^2/m^3');
314        VoidFraction as fraction (Brief="Void fraction of packing, m^3/m^3");
315        hs as length (Brief="Height of the packing stage");
316        ResistanceCoeff as positive (Brief="Resistance coefficient on the liquid load", Default = 0.6);
317
318        V as volume (Brief="Total volume of the tray");
319        HeatSupply      as heat_rate    (Brief="Rate of heat supply");
320        Gconst          as acceleration (Brief="Gravity Acceleration",Default=9.81,Hidden=true);
321        Mw(NComp)       as molweight    (Brief = "Component Mol Weight");
322        VapourFlow as Switcher (Valid=["on", "off"], Default = "on");
323       
324       
325VARIABLES
326
327        Inlet                   as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
328
329in      InletLiquid     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
330in      InletVapour     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
331out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
332out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
333
334        M(NComp) as mol (Brief="Molar Holdup in the tray", Default=0.01, Lower=0, Upper=100);
335        ML as mol (Brief="Molar liquid holdup", Default=0.01, Lower=0, Upper=100);
336        MV as mol (Brief="Molar vapour holdup", Default=0.01, Lower=0, Upper=100);
337        E as energy (Brief="Total Energy Holdup on tray", Default=-500);
338        vL as volume_mol (Brief="Liquid Molar Volume");
339        vV as volume_mol (Brief="Vapour Molar volume");
340       
341        miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s');
342#       miV as viscosity (Brief="Vapor dynamic viscosity", DisplayUnit='kg/m/s');
343        rhoL as dens_mass;
344        rhoV as dens_mass;
345       
346        deltaP as pressure (Lower = -10);
347       
348        uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Lower=0, Upper=100);
349        uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Lower=-0, Upper=100);
350        #dp as length (Brief="Particle diameter", Default=1e-3, Lower=0, Upper=10);
351        #invK as positive (Brief="Wall factor", Default=1, Upper=10);
352        #Rev as Real (Brief="Reynolds number of the vapor stream", Default=4000);
353        Al as area (Brief="Area occupied by the liquid", Default=0.001, Upper=10);
354        hl as positive (Brief="Column holdup", Unit='m^3/m^3', Default=0.04,Upper=1);
355
356
357SET
358        Mw = PP.MolecularWeight();
359
360
361EQUATIONS
362
363"Component Molar Balance"
364        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z;
365
366"Energy Balance"
367    diff(E) = ( Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h + InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h + HeatSupply);
368
369"Molar Holdup"
370        M = ML*OutletLiquid.z + MV*OutletVapour.z;
371       
372"Energy Holdup"
373    E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletLiquid.P*V;       
374       
375"Mol fraction normalisation"
376        sum(OutletLiquid.z)= 1.0;
377        sum(OutletLiquid.z)=sum(OutletVapour.z);
378       
379"Liquid Volume"
380        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
381
382"Vapour Volume"
383        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
384       
385"Chemical Equilibrium"
386        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z;
387       
388"Thermal Equilibrium"
389        OutletVapour.T = OutletLiquid.T;
390       
391"Mechanical Equilibrium"
392        OutletLiquid.P = OutletVapour.P;
393       
394"Geometry Constraint"
395    V*VoidFraction = ML*vL + MV*vV;
396
397"Liquid Density"
398        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
399
400"Vapour Density"
401        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
402
403"Liquid viscosity"
404        miL = PP.LiquidViscosity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
405
406#"Vapour viscosity"
407#       miV = PP.VapourViscosity(InletVapour.T, InletVapour.P, InletVapour.z);
408
409"Area occupied by the liquid"
410        Al = ML*vL/hs;
411
412"Volume flow rate of liquid, m^3/m^2/s"
413        uL * Al = OutletLiquid.F * vL;
414       
415"Volume flow rate of vapour, m^3/m^2/s"
416        uV * (V*VoidFraction/hs - Al) = InletVapour.F * vV;
417       
418"Liquid holdup"
419    hl*V*VoidFraction = ML*vL;
420
421"Liquid velocity as a function of liquid holdup, Billet (4-27)"
422        hl^3 = (12/Gconst) * AreaPerPackingVol^2 * (miL/rhoL) * uL;
423               
424        switch VapourFlow
425                case "on":
426                        "Pressure drop and Vapor flow, Billet (4-58)"
427                                deltaP/hs  = ResistanceCoeff * (AreaPerPackingVol/2 + 2/ColumnDiameter) * 1/((VoidFraction-hl)^3) * (uV^2) * rhoV;
428   
429            when InletVapour.F < 1e-6 * 'kmol/h' switchto "off";
430
431
432        case "off":
433                        InletVapour.F = 0 * 'mol/s';
434                        when deltaP > 1e-4 * 'atm' switchto "on";
435    end
436       
437"Pressure profile"
438    deltaP = InletVapour.P - OutletVapour.P;
439       
440end
441
442#*-------------------------------------
443* Nonequilibrium Model
444-------------------------------------*
445Model interfaceTeste
446       
447        ATTRIBUTES
448        Pallete         = false;
449        Icon            = "icon/Tray";
450        Brief           = "Descrition of variables of the equilibrium interface.";
451        Info            =
452"This model contains only the variables of the equilibrium interface.";
453
454        PARAMETERS
455outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
456outer NComp as Integer;
457outer NC1 as Integer;
458       
459        VARIABLES
460        NL(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Liquid Phase");
461        NV(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Vapour Phase");
462        T as temperature                (Brief = "Stream Temperature");
463        P as pressure                   (Brief = "Stream Pressure");
464        x(NComp) as fraction    (Brief = "Stream Molar Fraction on Liquid Phase");
465        y(NComp) as fraction    (Brief = "Stream Molar Fraction on Vapour Phase");
466        a as area                           (Brief = "Interface Area");
467        htL as heat_trans_coeff (Brief = "Heat Transference Coefficient on Liquid Phase");
468        htV as heat_trans_coeff (Brief = "Heat Transference Coefficient on Vapour Phase");     
469        E_liq as heat_rate      (Brief = "Liquid Energy Rate at interface");
470    E_vap as heat_rate      (Brief = "Vapour Energy Rate at interface");       
471        hL as enth_mol          (Brief = "Liquid Molar Enthalpy");
472        hV as enth_mol          (Brief = "Vapour Molar Enthalpy");
473        kL(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
474        kV(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
475       
476        EQUATIONS
477        "Liquid Enthalpy"
478        hL = PP.LiquidEnthalpy(T, P, x);
479       
480        "Vapour Enthalpy"
481        hV = PP.VapourEnthalpy(T, P, y);
482
483end
484
485Model trayRateBasicTeste
486        ATTRIBUTES
487        Pallete         = false;
488        Icon            = "icon/Tray";
489        Brief           = "Basic equations of a tray rate column model.";
490        Info            =
491"This model contains only the main equations of a column tray nonequilibrium model without
492the hidraulic equations.
493       
494== Assumptions ==
495* both phases (liquid and vapour) exists all the time;
496* no entrainment of liquid or vapour phase;
497* no weeping;
498* the dymanics in the downcomer are neglected.
499";
500       
501        PARAMETERS
502outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
503outer NComp as Integer;
504    NC1 as Integer;
505        V as volume(Brief="Total Volume of the tray");
506        Q as heat_rate (Brief="Rate of heat supply");
507        Ap as area (Brief="Plate area = Atray - Adowncomer");
508       
509        VARIABLES
510in      Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
511in      InletFV as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
512in      InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
513in      InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
514out     OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
515out     OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
516
517        M_liq(NComp) as mol (Brief="Liquid Molar Holdup in the tray");
518        M_vap(NComp) as mol (Brief="Vapour Molar Holdup in the tray");
519        ML as mol (Brief="Molar liquid holdup");
520        MV as mol (Brief="Molar vapour holdup");
521        E_liq as energy (Brief="Total Liquid Energy Holdup on tray");
522        E_vap as energy (Brief="Total Vapour Energy Holdup on tray");
523        vL as volume_mol (Brief="Liquid Molar Volume");
524        vV as volume_mol (Brief="Vapour Molar volume");
525        Level as length (Brief="Height of clear liquid on plate");
526        interf as interfaceTeste;       
527
528        SET   
529        NC1=NComp-1;
530
531        EQUATIONS
532        "Component Molar Balance"
533        diff(M_liq)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z
534        - OutletLiquid.F*OutletLiquid.z + interf.NL;
535       
536        diff(M_vap)=InletFV.F*InletFV.z + InletVapour.F*InletVapour.z
537        - OutletVapour.F*OutletVapour.z - interf.NV;
538       
539        "Energy Balance"
540        diff(E_liq) = Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h
541                - OutletLiquid.F*OutletLiquid.h  + Q + interf.E_liq;
542       
543        diff(E_vap) = InletFV.F*InletFV.h + InletVapour.F*InletVapour.h
544                - OutletVapour.F*OutletVapour.h  - interf.E_vap;
545       
546        "Molar Holdup"
547        M_liq = ML*OutletLiquid.z;
548       
549        M_vap = MV*OutletVapour.z;
550       
551        "Energy Holdup"
552        E_liq = ML*(OutletLiquid.h - OutletLiquid.P*vL);
553       
554        E_vap = MV*(OutletVapour.h - OutletVapour.P*vV);
555       
556        "Energy Rate through the interface"
557        interf.E_liq = interf.htL*interf.a*(interf.T-OutletLiquid.T)+sum(interf.NL)*interf.hL; 
558       
559        interf.E_vap = interf.htV*interf.a*(OutletVapour.T-interf.T)+sum(interf.NV)*interf.hV;
560       
561        "Mass Conservation"
562        interf.NL = interf.NV;
563       
564        "Energy Conservation"
565        interf.E_liq = interf.E_vap;
566       
567        "Mol fraction normalisation"
568        sum(OutletLiquid.z)= 1.0;
569        sum(OutletLiquid.z)= sum(OutletVapour.z);
570        sum(interf.x)=1.0;
571        sum(interf.x)=sum(interf.y);
572       
573        "Liquid Volume"
574        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
575        "Vapour Volume"
576        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
577       
578        "Chemical Equilibrium"
579        PP.LiquidFugacityCoefficient(interf.T, interf.P, interf.x)*interf.x =
580                PP.VapourFugacityCoefficient(interf.T, interf.P, interf.y)*interf.y;
581
582        "Geometry Constraint"
583        V = ML*vL + MV*vV;
584       
585        "Level of clear liquid over the weir"
586        Level = ML*vL/Ap;
587
588        "Total Mass Transfer Rates"
589        interf.NL(1:NC1)=interf.a*sumt(interf.kL*(interf.x(1:NC1)-OutletLiquid.z(1:NC1)))/vL+
590                OutletLiquid.z(1:NC1)*sum(interf.NL);
591
592#       interf.NL(1:NC1)=0.01*'kmol/s';
593       
594        interf.NV(1:NC1)=interf.a*sumt(interf.kV*(OutletVapour.z(1:NC1)-interf.y(1:NC1)))/vV+
595                OutletVapour.z(1:NC1)*sum(interf.NV);
596
597        "Mechanical Equilibrium"
598        OutletVapour.P = OutletLiquid.P;
599        interf.P=OutletLiquid.P;
600end
601
602Model trayRateTeste as trayRateBasicTeste
603        ATTRIBUTES
604        Pallete         = false;
605        Icon            = "icon/Tray";
606        Brief           = "Complete rate model of a column tray.";
607        Info            =
608"== Specify ==
609* the Feed stream
610* the Liquid inlet stream
611* the Vapour inlet stream
612* the Vapour outlet flow (OutletVapour.F)
613       
614== Initial ==
615* the plate temperature of both phases (OutletLiquid.T and OutletVapour.T)
616* the liquid height (Level) OR the liquid flow holdup (ML)
617* the vapor holdup (MV)
618* (NoComps - 1) OutletLiquid compositions
619";
620
621        PARAMETERS
622        Ah as area (Brief="Total holes area");
623        lw as length (Brief="Weir length");
624        g as acceleration (Default=9.81);
625        hw as length (Brief="Weir height");
626        beta as fraction (Brief="Aeration fraction");
627        alfa as fraction (Brief="Dry pressure drop coefficient");
628       
629        VapourFlow as Switcher(Valid = ["on", "off"], Default = "on");
630        LiquidFlow as Switcher(Valid = ["on", "off"], Default = "on");
631       
632        VARIABLES
633        rhoL as dens_mass;
634        rhoV as dens_mass;
635
636        EQUATIONS
637        "Liquid Density"
638        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
639        "Vapour Density"
640        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
641
642        switch LiquidFlow
643                case "on":
644                "Francis Equation"
645#               OutletLiquid.F*vL = 1.84*'m^0.5/s'*lw*((Level-(beta*hw))/(beta))^1.5;
646                OutletLiquid.F*vL = 1.84*'1/s'*lw*((Level-(beta*hw))/(beta))^2;
647                when Level < (beta * hw) switchto "off";
648               
649                case "off":
650                "Low level"
651                OutletLiquid.F = 0 * 'mol/h';
652                when Level > (beta * hw) + 1e-6*'m' switchto "on";
653        end
654
655        switch VapourFlow
656                case "on":
657                InletVapour.F*vV = sqrt((InletVapour.P - OutletVapour.P)/(rhoV*alfa))*Ah;
658                when InletVapour.F < 1e-6 * 'kmol/h' switchto "off";
659               
660                case "off":
661                InletVapour.F = 0 * 'mol/s';
662                when InletVapour.P > OutletVapour.P + Level*g*rhoL + 1e-1 * 'atm' switchto "on";
663        end     
664end
665
666*#
Note: See TracBrowser for help on using the repository browser.