source: branches/gui/eml/stage_separators/tray.mso @ 780

Last change on this file since 780 was 735, checked in by gerson bicca, 14 years ago

updates (some samples are obsoletes)

File size: 20.5 KB
Line 
1#*-------------------------------------------------------------------
2* EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC.
3*
4* This LIBRARY is free software; you can distribute it and/or modify
5* it under the therms of the ALSOC FREE LICENSE as available at
6* http://www.enq.ufrgs.br/alsoc.
7*
8* EMSO Copyright (C) 2004 - 2007 ALSOC, original code
9* from http://www.rps.eng.br Copyright (C) 2002-2004.
10* All rights reserved.
11*
12* EMSO is distributed under the therms of the ALSOC LICENSE as
13* available at http://www.enq.ufrgs.br/alsoc.
14*
15*----------------------------------------------------------------------
16* Author: Paula B. Staudt
17* $Id: tray.mso 522 2008-05-21 23:21:12Z arge $
18*--------------------------------------------------------------------*#
19
20using "streams";
21
22Model trayBasic
23        ATTRIBUTES
24        Pallete         = false;
25        Icon            = "icon/Tray";
26        Brief           = "Basic equations of a tray column model.";
27        Info            =
28"This model contains only the main equations of a column tray equilibrium model without
29the hidraulic equations.
30       
31== Assumptions ==
32* both phases (liquid and vapour) exists all the time;
33* thermodymanic equilibrium with Murphree plate efficiency;
34* no entrainment of liquid or vapour phase;
35* no weeping;
36* the dymanics in the downcomer are neglected.
37";
38       
39PARAMETERS
40outer PP                        as Plugin               (Brief = "External Physical Properties", Type="PP");
41outer NComp     as Integer;
42
43VARIABLES
44
45        Inlet                                                   as stream                               (Brief="Feed stream", Hidden=true, PosX=0, PosY=0.4932, Symbol="_{in}");
46        LiquidSideStream                as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
47        VapourSideStream        as vapour_stream        (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
48
49in      InletLiquid                     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
50in      InletVapour                     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
51out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
52out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
53
54
55        M(NComp)                        as mol                          (Brief="Molar Holdup in the tray");
56        ML                                              as mol                          (Brief="Molar liquid holdup");
57        MV                                              as mol                          (Brief="Molar vapour holdup");
58        E                                                       as energy                       (Brief="Total Energy Holdup on tray");
59        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
60        vV                                              as volume_mol   (Brief="Vapour Molar volume");
61        Level                                   as length                       (Brief="Height of clear liquid on plate");
62        yideal(NComp)           as fraction;
63
64
65EQUATIONS
66"Component Molar Balance"
67        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z-
68        LiquidSideStream.F*LiquidSideStream.z-VapourSideStream.F*VapourSideStream.z;
69
70"Molar Holdup"
71        M = ML*OutletLiquid.z + MV*OutletVapour.z;
72
73"Mol fraction normalisation"
74        sum(OutletLiquid.z)= 1.0;
75        sum(OutletLiquid.z)= sum(OutletVapour.z);
76
77"Liquid Volume"
78        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
79
80"Vapour Volume"
81        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
82
83"Chemical Equilibrium"
84        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
85
86"Thermal Equilibrium"
87        OutletVapour.T = OutletLiquid.T;
88
89"Mechanical Equilibrium"
90        OutletVapour.P = OutletLiquid.P;
91       
92"Thermal Equilibrium Vapour Side Stream"
93        OutletVapour.T = VapourSideStream.T;
94
95"Thermal Equilibrium Liquid Side Stream"
96        OutletLiquid.T = LiquidSideStream.T;
97
98"Mechanical Equilibrium Vapour Side Stream"
99        OutletVapour.P= VapourSideStream.P;
100
101"Mechanical Equilibrium Liquid Side Stream"
102        OutletLiquid.P = LiquidSideStream.P;
103
104"Composition Liquid Side Stream"
105        OutletLiquid.z= LiquidSideStream.z;
106       
107"Composition Vapour Side Stream"
108        OutletVapour.z= VapourSideStream.z;
109
110end
111
112Model tray as trayBasic
113        ATTRIBUTES
114        Pallete         = false;
115        Icon            = "icon/Tray";
116        Brief           = "Complete model of a column tray.";
117        Info            =
118"== Specify ==
119* the Feed stream
120* the Liquid inlet stream
121* the Vapour inlet stream
122* the Vapour outlet flow (OutletVapour.F)
123       
124== Initial ==
125* the plate temperature (OutletLiquid.T)
126* the liquid height (Level) OR the liquid flow OutletLiquid.F
127* (NoComps - 1) OutletLiquid compositions
128
129== Options ==
130You can choose the equation for the liquid outlet flow and the vapour
131inlet flow calculation through the VapourFlowModel and LiquidFlowModel
132switchers.
133
134== References ==
135* ELGUE, S.; PRAT, L.; CABASSUD, M.; LANN, J. L.; CéZERAC, J. Dynamic models for start-up operations of batch distillation columns with experimental validation. Computers and Chemical Engineering, v. 28, p. 2735-2747, 2004.
136* FEEHERY, W. F. Dynamic Optimization with Path Constraints. Tese (Doutorado) - Massachusetts Institute of Technology, June 1998.
137* KLINGBERG, A. Modeling and Optimization of Batch Distillation. Dissertação (Mestrado) - Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, fev. 2000.
138* OLSEN, I.; ENDRESTOL, G. O.; SIRA, T. A rigorous and efficient distillation column model for engineering and training simulators. Computers and Chemical Engineering,v. 21, n. Suppl, p. S193-S198, 1997.
139* REEPMEYER, F.; REPKE, J.-U.; WOZNY, G. Analysis of the start-up process for reactive distillation. Chemical Engineering Technology, v. 26, p. 81-86, 2003.
140* ROFFEL, B.; BETLEM, B.; RUIJTER, J. de. First principles dynamic modeling and multivariable control of a cryogenic distillation column process. Computers and Chemical Engineering, v. 24, p. 111-123, 2000.
141* WANG, L.; LI, P.; WOZNY, G.; WANG, S. A start-up model for simulation of batch distillation starting from a cold state. Computers and Chemical Engineering, v. 27, p.1485-1497, 2003.
142";     
143
144VARIABLES
145        rhoL as dens_mass;
146        rhoV as dens_mass;
147
148EQUATIONS
149
150"Liquid Density"
151        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
152       
153"Vapour Density"
154        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
155
156end
157
158#*-------------------------------------------------------------------
159* Model of a tray with reaction
160*-------------------------------------------------------------------*#
161Model trayReac
162        ATTRIBUTES
163        Pallete         = false;
164        Icon            = "icon/Tray";
165        Brief           = "Model of a tray with reaction.";
166        Info            =
167"== Assumptions ==
168* both phases (liquid and vapour) exists all the time;
169* thermodymanic equilibrium with Murphree plate efficiency;
170* no entrainment of liquid or vapour phase;
171* no weeping;
172* the dymanics in the downcomer are neglected.
173       
174== Specify ==
175* the Feed stream;
176* the Liquid inlet stream;
177* the Vapour inlet stream;
178* the Vapour outlet flow (OutletVapour.F);
179* the reaction related variables.
180       
181== Initial ==
182* the plate temperature (OutletLiquid.T)
183* the liquid height (Level) OR the liquid flow OutletLiquid.F
184* (NoComps - 1) OutletLiquid compositions
185";
186
187PARAMETERS
188
189        outer PP                        as Plugin(Type="PP");
190        outer NComp     as Integer;
191       
192VARIABLES
193
194        Inlet                                           as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
195        LiquidSideStream        as liquid_stream        (Brief="liquid Sidestream", Hidden=true, Symbol="_{outL}");
196        VapourSideStream as vapour_stream       (Brief="vapour Sidestream", Hidden=true, Symbol="_{outV}");
197       
198
199in              InletLiquid             as      stream                          (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
200in              InletVapour             as      stream                          (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
201out     OutletLiquid    as      liquid_stream           (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
202out     OutletVapour    as      vapour_stream   (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
203
204        yideal(NComp)   as fraction;
205
206        M(NComp)                as mol                          (Brief="Molar Holdup in the tray");
207        ML                                              as mol                          (Brief="Molar liquid holdup");
208        MV                                              as mol                          (Brief="Molar vapour holdup");
209        E                                               as energy                       (Brief="Total Energy Holdup on tray");
210        vL                                              as volume_mol   (Brief="Liquid Molar Volume");
211        vV                                              as volume_mol   (Brief="Vapour Molar volume");
212        Level                                   as length                       (Brief="Height of clear liquid on plate");
213        Vol                                             as volume;
214       
215        rhoL                    as dens_mass;
216        rhoV                    as dens_mass;
217        r3                              as reaction_mol         (Brief = "Reaction resulting ethyl acetate", DisplayUnit = 'mol/l/s');
218        C(NComp)        as conc_mol             (Brief = "Molar concentration", Lower = -1);
219       
220EQUATIONS
221
222"Molar Concentration"
223        OutletLiquid.z = vL * C;
224       
225"Reaction"
226        r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4))*'l/mol/s';
227       
228"Molar Holdup"
229        M = ML*OutletLiquid.z + MV*OutletVapour.z;
230
231"Thermal Equilibrium Vapour Side Stream"
232        OutletVapour.T = VapourSideStream.T;
233
234"Thermal Equilibrium Liquid Side Stream"
235        OutletLiquid.T = LiquidSideStream.T;
236
237"Mechanical Equilibrium Vapour Side Stream"
238        OutletVapour.P= VapourSideStream.P;
239
240"Mechanical Equilibrium Liquid Side Stream"
241        OutletLiquid.P = LiquidSideStream.P;
242
243"Composition Liquid Side Stream"
244        OutletLiquid.z= LiquidSideStream.z;
245       
246"Composition Vapour Side Stream"
247        OutletVapour.z= VapourSideStream.z;
248
249"Mol fraction normalisation"
250        sum(OutletLiquid.z)= 1.0;
251
252"Liquid Volume"
253        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
254
255"Vapour Volume"
256        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
257
258"Thermal Equilibrium"
259        OutletVapour.T = OutletLiquid.T;
260
261"Mechanical Equilibrium"
262        OutletVapour.P = OutletLiquid.P;
263
264        Vol = ML*vL;
265       
266"Liquid Density"
267        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
268
269"Vapour Density"
270        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
271
272"Chemical Equilibrium"
273        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, yideal)*yideal;
274
275        sum(OutletLiquid.z)= sum(OutletVapour.z);
276
277end
278
279#*-------------------------------------
280* Model of a packed column stage
281-------------------------------------*#
282Model packedStage
283        ATTRIBUTES
284        Pallete         = false;
285        Icon            = "icon/PackedStage";
286        Brief           = "Complete model of a packed column stage.";
287        Info            =
288"== Specify ==
289* the Feed stream
290* the Liquid inlet stream
291* the Vapour inlet stream
292* the stage pressure drop (deltaP)
293       
294== Initial ==
295* the plate temperature (OutletLiquid.T)
296* the liquid molar holdup ML
297* (NoComps - 1) OutletLiquid compositions
298";     
299       
300PARAMETERS
301
302outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
303outer NComp as Integer;
304
305        PPwater as Plugin(Brief="Physical Properties",Type="PP",Components = [ "water" ],
306                LiquidModel = "PR",
307                VapourModel = "PR"
308        );
309       
310        Mw(NComp)       as molweight    (Brief = "Component Mol Weight");
311       
312VARIABLES
313
314        Inlet                   as stream                               (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
315in      InletLiquid                     as stream                               (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
316in      InletVapour                     as stream                               (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
317out     OutletLiquid    as liquid_stream        (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
318out     OutletVapour    as vapour_stream        (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
319
320        M(NComp) as mol (Brief="Molar Holdup in the tray", Default=0.01, Lower=0, Upper=100);
321        ML as mol (Brief="Molar liquid holdup", Default=0.01, Lower=0, Upper=100);
322        MV as mol (Brief="Molar vapour holdup", Default=0.01, Lower=0, Upper=100);
323        E as energy (Brief="Total Energy Holdup on tray", Default=-500);
324        vL as volume_mol (Brief="Liquid Molar Volume");
325        vV as volume_mol (Brief="Vapour Molar volume");
326       
327        miL as viscosity (Brief="Liquid dynamic viscosity", DisplayUnit='kg/m/s');
328        miV as viscosity (Brief="Vapor dynamic viscosity", DisplayUnit='kg/m/s');
329        rhoL as dens_mass;
330        rhoV as dens_mass;
331       
332        deltaP as pressure;
333       
334        uL as velocity (Brief="volume flow rate of liquid, m^3/m^2/s", Lower=-10, Upper=100);
335        uV as velocity (Brief="volume flow rate of vapor, m^3/m^2/s", Lower=-10, Upper=100);
336        dp as length (Brief="Particle diameter", Default=1e-3, Lower=0, Upper=10);
337        invK as positive (Brief="Wall factor", Default=1, Upper=10);
338        Rev as Real (Brief="Reynolds number of the vapor stream", Default=4000);
339        Al as area (Brief="Area occupied by the liquid", Default=0.001, Upper=1);
340        hl as positive (Brief="Column holdup", Unit='m^3/m^3', Default=0.01,Upper=10);
341
342SET
343        Mw = PP.MolecularWeight();
344
345EQUATIONS
346
347"Component Molar Balance"
348        diff(M)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z + InletVapour.F*InletVapour.z- OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z;
349
350"Molar Holdup"
351        M = ML*OutletLiquid.z + MV*OutletVapour.z;
352       
353"Mol fraction normalisation"
354        sum(OutletLiquid.z)= 1.0;
355       
356"Liquid Volume"
357        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
358
359"Vapour Volume"
360        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
361       
362"Chemical Equilibrium"
363        PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z =   PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z;
364       
365"Thermal Equilibrium"
366        OutletVapour.T = OutletLiquid.T;
367       
368"Mechanical Equilibrium"
369        OutletLiquid.P = OutletVapour.P;
370       
371"Liquid Density"
372        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
373
374"Vapour Density"
375        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
376
377"Liquid viscosity"
378        miL = PP.LiquidViscosity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
379
380"Vapour viscosity"
381        miV = PP.VapourViscosity(InletVapour.T, InletVapour.P, InletVapour.z);
382
383"Volume flow rate of liquid, m^3/m^2/s"
384        uL * Al = OutletLiquid.F * vL;
385       
386        deltaP = InletVapour.P - OutletVapour.P;
387       
388end
389
390#*-------------------------------------
391* Nonequilibrium Model
392-------------------------------------*
393Model interfaceTeste
394       
395        ATTRIBUTES
396        Pallete         = false;
397        Icon            = "icon/Tray";
398        Brief           = "Descrition of variables of the equilibrium interface.";
399        Info            =
400"This model contains only the variables of the equilibrium interface.";
401
402        PARAMETERS
403outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
404outer NComp as Integer;
405outer NC1 as Integer;
406       
407        VARIABLES
408        NL(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Liquid Phase");
409        NV(NComp) as flow_mol_delta     (Brief = "Stream Molar Rate on Vapour Phase");
410        T as temperature                (Brief = "Stream Temperature");
411        P as pressure                   (Brief = "Stream Pressure");
412        x(NComp) as fraction    (Brief = "Stream Molar Fraction on Liquid Phase");
413        y(NComp) as fraction    (Brief = "Stream Molar Fraction on Vapour Phase");
414        a as area                           (Brief = "Interface Area");
415        htL as heat_trans_coeff (Brief = "Heat Transference Coefficient on Liquid Phase");
416        htV as heat_trans_coeff (Brief = "Heat Transference Coefficient on Vapour Phase");     
417        E_liq as heat_rate      (Brief = "Liquid Energy Rate at interface");
418    E_vap as heat_rate      (Brief = "Vapour Energy Rate at interface");       
419        hL as enth_mol          (Brief = "Liquid Molar Enthalpy");
420        hV as enth_mol          (Brief = "Vapour Molar Enthalpy");
421        kL(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
422        kV(NC1,NC1) as velocity (Brief = "Mass Transfer Coefficients");
423       
424        EQUATIONS
425        "Liquid Enthalpy"
426        hL = PP.LiquidEnthalpy(T, P, x);
427       
428        "Vapour Enthalpy"
429        hV = PP.VapourEnthalpy(T, P, y);
430
431end
432
433Model trayRateBasicTeste
434        ATTRIBUTES
435        Pallete         = false;
436        Icon            = "icon/Tray";
437        Brief           = "Basic equations of a tray rate column model.";
438        Info            =
439"This model contains only the main equations of a column tray nonequilibrium model without
440the hidraulic equations.
441       
442== Assumptions ==
443* both phases (liquid and vapour) exists all the time;
444* no entrainment of liquid or vapour phase;
445* no weeping;
446* the dymanics in the downcomer are neglected.
447";
448       
449        PARAMETERS
450outer PP as Plugin(Brief = "External Physical Properties", Type="PP");
451outer NComp as Integer;
452    NC1 as Integer;
453        V as volume(Brief="Total Volume of the tray");
454        Q as heat_rate (Brief="Rate of heat supply");
455        Ap as area (Brief="Plate area = Atray - Adowncomer");
456       
457        VARIABLES
458in      Inlet as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
459in      InletFV as stream (Brief="Feed stream", PosX=0, PosY=0.4932, Symbol="_{in}");
460in      InletLiquid as stream (Brief="Inlet liquid stream", PosX=0.5195, PosY=0, Symbol="_{inL}");
461in      InletVapour as stream (Brief="Inlet vapour stream", PosX=0.4994, PosY=1, Symbol="_{inV}");
462out     OutletLiquid as liquid_stream (Brief="Outlet liquid stream", PosX=0.8277, PosY=1, Symbol="_{outL}");
463out     OutletVapour as vapour_stream (Brief="Outlet vapour stream", PosX=0.8043, PosY=0, Symbol="_{outV}");
464
465        M_liq(NComp) as mol (Brief="Liquid Molar Holdup in the tray");
466        M_vap(NComp) as mol (Brief="Vapour Molar Holdup in the tray");
467        ML as mol (Brief="Molar liquid holdup");
468        MV as mol (Brief="Molar vapour holdup");
469        E_liq as energy (Brief="Total Liquid Energy Holdup on tray");
470        E_vap as energy (Brief="Total Vapour Energy Holdup on tray");
471        vL as volume_mol (Brief="Liquid Molar Volume");
472        vV as volume_mol (Brief="Vapour Molar volume");
473        Level as length (Brief="Height of clear liquid on plate");
474        interf as interfaceTeste;       
475
476        SET   
477        NC1=NComp-1;
478
479        EQUATIONS
480        "Component Molar Balance"
481        diff(M_liq)=Inlet.F*Inlet.z + InletLiquid.F*InletLiquid.z
482        - OutletLiquid.F*OutletLiquid.z + interf.NL;
483       
484        diff(M_vap)=InletFV.F*InletFV.z + InletVapour.F*InletVapour.z
485        - OutletVapour.F*OutletVapour.z - interf.NV;
486       
487        "Energy Balance"
488        diff(E_liq) = Inlet.F*Inlet.h + InletLiquid.F*InletLiquid.h
489                - OutletLiquid.F*OutletLiquid.h  + Q + interf.E_liq;
490       
491        diff(E_vap) = InletFV.F*InletFV.h + InletVapour.F*InletVapour.h
492                - OutletVapour.F*OutletVapour.h  - interf.E_vap;
493       
494        "Molar Holdup"
495        M_liq = ML*OutletLiquid.z;
496       
497        M_vap = MV*OutletVapour.z;
498       
499        "Energy Holdup"
500        E_liq = ML*(OutletLiquid.h - OutletLiquid.P*vL);
501       
502        E_vap = MV*(OutletVapour.h - OutletVapour.P*vV);
503       
504        "Energy Rate through the interface"
505        interf.E_liq = interf.htL*interf.a*(interf.T-OutletLiquid.T)+sum(interf.NL)*interf.hL; 
506       
507        interf.E_vap = interf.htV*interf.a*(OutletVapour.T-interf.T)+sum(interf.NV)*interf.hV;
508       
509        "Mass Conservation"
510        interf.NL = interf.NV;
511       
512        "Energy Conservation"
513        interf.E_liq = interf.E_vap;
514       
515        "Mol fraction normalisation"
516        sum(OutletLiquid.z)= 1.0;
517        sum(OutletLiquid.z)= sum(OutletVapour.z);
518        sum(interf.x)=1.0;
519        sum(interf.x)=sum(interf.y);
520       
521        "Liquid Volume"
522        vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
523        "Vapour Volume"
524        vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z);
525       
526        "Chemical Equilibrium"
527        PP.LiquidFugacityCoefficient(interf.T, interf.P, interf.x)*interf.x =
528                PP.VapourFugacityCoefficient(interf.T, interf.P, interf.y)*interf.y;
529
530        "Geometry Constraint"
531        V = ML*vL + MV*vV;
532       
533        "Level of clear liquid over the weir"
534        Level = ML*vL/Ap;
535
536        "Total Mass Transfer Rates"
537        interf.NL(1:NC1)=interf.a*sumt(interf.kL*(interf.x(1:NC1)-OutletLiquid.z(1:NC1)))/vL+
538                OutletLiquid.z(1:NC1)*sum(interf.NL);
539
540#       interf.NL(1:NC1)=0.01*'kmol/s';
541       
542        interf.NV(1:NC1)=interf.a*sumt(interf.kV*(OutletVapour.z(1:NC1)-interf.y(1:NC1)))/vV+
543                OutletVapour.z(1:NC1)*sum(interf.NV);
544
545        "Mechanical Equilibrium"
546        OutletVapour.P = OutletLiquid.P;
547        interf.P=OutletLiquid.P;
548end
549
550Model trayRateTeste as trayRateBasicTeste
551        ATTRIBUTES
552        Pallete         = false;
553        Icon            = "icon/Tray";
554        Brief           = "Complete rate model of a column tray.";
555        Info            =
556"== Specify ==
557* the Feed stream
558* the Liquid inlet stream
559* the Vapour inlet stream
560* the Vapour outlet flow (OutletVapour.F)
561       
562== Initial ==
563* the plate temperature of both phases (OutletLiquid.T and OutletVapour.T)
564* the liquid height (Level) OR the liquid flow holdup (ML)
565* the vapor holdup (MV)
566* (NoComps - 1) OutletLiquid compositions
567";
568
569        PARAMETERS
570        Ah as area (Brief="Total holes area");
571        lw as length (Brief="Weir length");
572        g as acceleration (Default=9.81);
573        hw as length (Brief="Weir height");
574        beta as fraction (Brief="Aeration fraction");
575        alfa as fraction (Brief="Dry pressure drop coefficient");
576       
577        VapourFlow as Switcher(Valid = ["on", "off"], Default = "on");
578        LiquidFlow as Switcher(Valid = ["on", "off"], Default = "on");
579       
580        VARIABLES
581        rhoL as dens_mass;
582        rhoV as dens_mass;
583
584        EQUATIONS
585        "Liquid Density"
586        rhoL = PP.LiquidDensity(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z);
587        "Vapour Density"
588        rhoV = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z);
589
590        switch LiquidFlow
591                case "on":
592                "Francis Equation"
593#               OutletLiquid.F*vL = 1.84*'m^0.5/s'*lw*((Level-(beta*hw))/(beta))^1.5;
594                OutletLiquid.F*vL = 1.84*'1/s'*lw*((Level-(beta*hw))/(beta))^2;
595                when Level < (beta * hw) switchto "off";
596               
597                case "off":
598                "Low level"
599                OutletLiquid.F = 0 * 'mol/h';
600                when Level > (beta * hw) + 1e-6*'m' switchto "on";
601        end
602
603        switch VapourFlow
604                case "on":
605                InletVapour.F*vV = sqrt((InletVapour.P - OutletVapour.P)/(rhoV*alfa))*Ah;
606                when InletVapour.F < 1e-6 * 'kmol/h' switchto "off";
607               
608                case "off":
609                InletVapour.F = 0 * 'mol/s';
610                when InletVapour.P > OutletVapour.P + Level*g*rhoL + 1e-1 * 'atm' switchto "on";
611        end     
612end
613
614*#
Note: See TracBrowser for help on using the repository browser.