1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *---------------------------------------------------------------------- |
---|
15 | * Author: Paula B. Staudt |
---|
16 | * $Id: flash.mso 714 2009-02-16 20:23:57Z bicca $ |
---|
17 | *--------------------------------------------------------------------*# |
---|
18 | |
---|
19 | using "streams"; |
---|
20 | |
---|
21 | Model flash |
---|
22 | |
---|
23 | ATTRIBUTES |
---|
24 | Pallete = true; |
---|
25 | Icon = "icon/Flash"; |
---|
26 | Brief = "Model of a dynamic flash."; |
---|
27 | Info = |
---|
28 | "== Assumptions == |
---|
29 | * Both phases are perfectly mixed. |
---|
30 | |
---|
31 | == Specify == |
---|
32 | * The feed stream; |
---|
33 | * The outlet flows: OutletVapour.F and OutletLiquid.F. |
---|
34 | |
---|
35 | == Initial Conditions == |
---|
36 | * The flash initial temperature (Temperature_Initial); |
---|
37 | * The flash initial level (Levelpercent_Initial); |
---|
38 | *The Outlet Liquid Composition (Composition_Initial). |
---|
39 | "; |
---|
40 | |
---|
41 | PARAMETERS |
---|
42 | |
---|
43 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
44 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
45 | |
---|
46 | VesselVolume as volume (Brief="Total Volume of the flash"); |
---|
47 | Mw(NComp) as molweight (Hidden=true); |
---|
48 | Orientation as Switcher (Valid=["vertical","horizontal"],Default="vertical"); |
---|
49 | Diameter as length (Brief="Vessel diameter"); |
---|
50 | |
---|
51 | Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); |
---|
52 | Temperature_Initial as temperature (Brief="Initial Liquid Temperature", Default = 330); |
---|
53 | Composition_Initial(NComp) as fraction (Brief="Initial Composition", Default = 0.10); |
---|
54 | |
---|
55 | SET |
---|
56 | |
---|
57 | Mw=PP.MolecularWeight(); |
---|
58 | |
---|
59 | VARIABLES |
---|
60 | |
---|
61 | in Inlet as stream (Brief="Feed Stream", PosX=0, PosY=0.5421, Symbol="_{in}"); |
---|
62 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4790, PosY=1, Symbol="_{outL}"); |
---|
63 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4877, PosY=0, Symbol="_{outV}"); |
---|
64 | in InletQ as power (Brief="Rate of heat supply", PosX=1, PosY=0.7559, Protected =true,Symbol="_{in}"); |
---|
65 | |
---|
66 | TotalHoldup(NComp) as mol (Brief="Molar Holdup in the Vessel", Protected=true); |
---|
67 | LiquidHoldup as mol (Brief="Molar liquid holdup", Protected=true); |
---|
68 | VapourHoldup as mol (Brief="Molar vapour holdup", Protected=true); |
---|
69 | |
---|
70 | E as energy (Brief="Total Energy Holdup in the Vessel", Protected=true); |
---|
71 | vL as volume_mol (Brief="Liquid Molar Volume", Protected=true); |
---|
72 | vV as volume_mol (Brief="Vapour Molar volume", Protected=true); |
---|
73 | Level as length (Brief="liquid height", Protected=true); |
---|
74 | Across as area (Brief="Flash Cross section area", Protected=true); |
---|
75 | vfrac as positive (Brief="Vapourization fraction", Symbol="\phi", Protected=true); |
---|
76 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}", Protected=true); |
---|
77 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); |
---|
78 | |
---|
79 | out TI as control_signal (Brief="Temperature Indicator", PosX=1, PosY=0.2, Protected=true); |
---|
80 | out PI as control_signal (Brief="Pressure Indicator", PosX=1, PosY=0.3, Protected=true); |
---|
81 | out LI as control_signal (Brief="Level Indicator", PosX=1, PosY=0.4, Protected=true); |
---|
82 | |
---|
83 | INITIAL |
---|
84 | |
---|
85 | # Initial level Percent |
---|
86 | LI = Levelpercent_Initial; |
---|
87 | |
---|
88 | # Initial Outlet Liquid Temperature |
---|
89 | OutletLiquid.T = Temperature_Initial; |
---|
90 | |
---|
91 | # Initial Outlet Liquid Composition Normalized |
---|
92 | OutletLiquid.z(1:NComp - 1) = Composition_Initial(1:NComp - 1)/sum(Composition_Initial); |
---|
93 | |
---|
94 | EQUATIONS |
---|
95 | |
---|
96 | "Component Molar Balance" |
---|
97 | diff(TotalHoldup)=Inlet.F*Inlet.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z; |
---|
98 | |
---|
99 | "Energy Balance" |
---|
100 | diff(E) = Inlet.F*Inlet.h - OutletLiquid.F*OutletLiquid.h - OutletVapour.F*OutletVapour.h + InletQ; |
---|
101 | |
---|
102 | "Molar Holdup" |
---|
103 | TotalHoldup = LiquidHoldup*OutletLiquid.z + VapourHoldup*OutletVapour.z; |
---|
104 | |
---|
105 | "Energy Holdup" |
---|
106 | E = LiquidHoldup*OutletLiquid.h + VapourHoldup*OutletVapour.h - OutletLiquid.P*VesselVolume; |
---|
107 | |
---|
108 | "Mol fraction normalisation" |
---|
109 | sum(OutletLiquid.z)=1.0; |
---|
110 | |
---|
111 | "Mol fraction normalisation" |
---|
112 | sum(OutletLiquid.z)=sum(OutletVapour.z); |
---|
113 | |
---|
114 | "Vaporization Fraction" |
---|
115 | OutletVapour.F = Inlet.F * vfrac; |
---|
116 | |
---|
117 | "Liquid Volume" |
---|
118 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
119 | |
---|
120 | "Vapour Volume" |
---|
121 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
122 | |
---|
123 | "Chemical Equilibrium" |
---|
124 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = |
---|
125 | PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; |
---|
126 | |
---|
127 | "Thermal Equilibrium" |
---|
128 | OutletVapour.T = OutletLiquid.T; |
---|
129 | |
---|
130 | "Mechanical Equilibrium" |
---|
131 | OutletVapour.P = OutletLiquid.P; |
---|
132 | |
---|
133 | "Pressure Drop" |
---|
134 | OutletLiquid.P = Inlet.P - Pdrop; |
---|
135 | |
---|
136 | "Pressure Ratio" |
---|
137 | OutletLiquid.P = Inlet.P * Pratio; |
---|
138 | |
---|
139 | "Geometry Constraint" |
---|
140 | VesselVolume = LiquidHoldup * vL + VapourHoldup * vV; |
---|
141 | |
---|
142 | "Temperature indicator in Celsius Degree" |
---|
143 | TI * 'K' = OutletLiquid.T - 273.15*'K'; |
---|
144 | |
---|
145 | "Pressure indicator" |
---|
146 | PI * 'atm' = OutletLiquid.P; |
---|
147 | |
---|
148 | "Level indicator" |
---|
149 | LI*VesselVolume= Level*Across; |
---|
150 | |
---|
151 | switch Orientation |
---|
152 | case "vertical": |
---|
153 | "Cross Section Area" |
---|
154 | Across = 0.5 * asin(1) * Diameter^2; |
---|
155 | |
---|
156 | "Liquid Level" |
---|
157 | LiquidHoldup * vL = Across * Level; |
---|
158 | |
---|
159 | case "horizontal": |
---|
160 | "Cylindrical Side Area" |
---|
161 | Across = 0.25*Diameter^2 * (asin(1) - asin((Diameter - 2*Level)/Diameter)) + |
---|
162 | (Level - 0.5*Diameter)*sqrt(Level*(Diameter - Level)); |
---|
163 | |
---|
164 | "Liquid Level" |
---|
165 | 0.5 * asin(1) * Diameter^2 * LiquidHoldup* vL = Across * VesselVolume; |
---|
166 | end |
---|
167 | |
---|
168 | end |
---|
169 | |
---|
170 | #*---------------------------------------------------------------------- |
---|
171 | * Model of a steady-state flash. |
---|
172 | *---------------------------------------------------------------------*# |
---|
173 | Model flash_steady |
---|
174 | |
---|
175 | ATTRIBUTES |
---|
176 | Pallete = true; |
---|
177 | Icon = "icon/Flash"; |
---|
178 | Brief = "Model of a static PH flash."; |
---|
179 | Info = |
---|
180 | "This model is for using the flashPH routine available on VRTherm. |
---|
181 | |
---|
182 | == Assumptions == |
---|
183 | * perfect mixing of both phases; |
---|
184 | |
---|
185 | == Specify == |
---|
186 | * The feed stream; |
---|
187 | * The heat duty; |
---|
188 | * The outlet pressure. |
---|
189 | "; |
---|
190 | |
---|
191 | PARAMETERS |
---|
192 | |
---|
193 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
194 | outer NComp as Integer; |
---|
195 | |
---|
196 | VARIABLES |
---|
197 | |
---|
198 | in Inlet as stream (Brief="Feed Stream", PosX=0, PosY=0.5421, Symbol="_{in}"); |
---|
199 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4790, PosY=1, Symbol="_{outL}"); |
---|
200 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4877, PosY=0, Symbol="_{outV}"); |
---|
201 | in InletQ as power (Brief="Rate of heat supply", PosX=1, PosY=0.7559, Symbol="_{in}"); |
---|
202 | |
---|
203 | vfrac as fraction (Brief="Vaporization fraction", Symbol="\phi"); |
---|
204 | h as enth_mol (Brief="Mixture enthalpy"); |
---|
205 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
206 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
207 | |
---|
208 | EQUATIONS |
---|
209 | |
---|
210 | if vfrac > 0 and vfrac <1 |
---|
211 | |
---|
212 | then |
---|
213 | "The flash calculation" |
---|
214 | [vfrac, OutletLiquid.z, OutletVapour.z] = PP.Flash(OutletVapour.T, OutletVapour.P, Inlet.z); |
---|
215 | |
---|
216 | else |
---|
217 | "Chemical equilibrium" |
---|
218 | [vfrac,OutletLiquid.z,OutletVapour.z]=PP.FlashPH(OutletLiquid.P,h,Inlet.z); |
---|
219 | |
---|
220 | end |
---|
221 | |
---|
222 | "Global Molar Balance" |
---|
223 | Inlet.F = OutletVapour.F + OutletLiquid.F; |
---|
224 | |
---|
225 | "Vapour Fraction" |
---|
226 | OutletVapour.F = Inlet.F * vfrac; |
---|
227 | |
---|
228 | "Energy Balance" |
---|
229 | Inlet.F*(h - Inlet.h) = InletQ; |
---|
230 | Inlet.F*h = Inlet.F*(1-vfrac)*OutletLiquid.h + Inlet.F*vfrac*OutletVapour.h; |
---|
231 | |
---|
232 | "Thermal Equilibrium" |
---|
233 | OutletVapour.T = OutletLiquid.T; |
---|
234 | |
---|
235 | "Mechanical Equilibrium" |
---|
236 | OutletVapour.P = OutletLiquid.P; |
---|
237 | |
---|
238 | "Pressure Drop" |
---|
239 | OutletLiquid.P = Inlet.P - Pdrop; |
---|
240 | |
---|
241 | "Pressure Ratio" |
---|
242 | OutletLiquid.P = Inlet.P * Pratio; |
---|
243 | |
---|
244 | end |
---|
245 | |
---|
246 | #*---------------------------------------------------------------------- |
---|
247 | * Another model of a steady-state PH flash. |
---|
248 | * It is recommended to use [v,x,y]=PP.FlashPH(P,h,z) instead of. |
---|
249 | *---------------------------------------------------------------------*# |
---|
250 | Model FlashPHSteady |
---|
251 | ATTRIBUTES |
---|
252 | Pallete = true; |
---|
253 | Icon = "icon/Flash"; |
---|
254 | Brief = "Another model of a static PH flash."; |
---|
255 | Info = |
---|
256 | "This model shows how to model a pressure enthalpy flash |
---|
257 | directly with the EMSO modeling language. |
---|
258 | |
---|
259 | This model is for demonstration purposes only, the flashPH |
---|
260 | routine available on VRTherm is much more robust. |
---|
261 | |
---|
262 | == Assumptions == |
---|
263 | * perfect mixing of both phases; |
---|
264 | |
---|
265 | == Specify == |
---|
266 | * the feed stream; |
---|
267 | * the heat duty; |
---|
268 | * the outlet pressure. |
---|
269 | "; |
---|
270 | |
---|
271 | PARAMETERS |
---|
272 | outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); |
---|
273 | outer NComp as Integer; |
---|
274 | B as Real(Default=1000, Brief="Regularization Factor"); |
---|
275 | |
---|
276 | VARIABLES |
---|
277 | in Inlet as stream(Brief="Feed Stream", PosX=0, PosY=0.5421, Symbol="_{in}"); |
---|
278 | out OutletL as liquid_stream(Brief="Liquid outlet stream", PosX=0.4790, PosY=1, Symbol="_{outL}"); |
---|
279 | out OutletV as vapour_stream(Brief="Vapour outlet stream", PosX=0.4877, PosY=0, Symbol="_{outV}"); |
---|
280 | in InletQ as power (Brief="Rate of heat supply", PosX=1, PosY=0.7559, Symbol="_{in}"); |
---|
281 | vfrac as fraction(Brief="Vaporization fraction", Symbol="\phi"); |
---|
282 | vsat as Real(Lower=-0.1, Upper=1.1, Brief="Vaporization fraction if saturated", Symbol="\phi_{sat}"); |
---|
283 | Tsat as temperature(Lower=173, Upper=1473, Brief="Temperature if saturated"); |
---|
284 | xsat(NComp) as Real(Lower=0, Upper=1, Brief="Liquid composition if saturated"); |
---|
285 | ysat(NComp) as Real(Lower=0, Upper=1, Brief="Vapour composition if saturated"); |
---|
286 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
287 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
288 | |
---|
289 | zero_one as fraction(Brief="Regularization Variable"); |
---|
290 | one_zero as fraction(Brief="Regularization Variable"); |
---|
291 | |
---|
292 | EQUATIONS |
---|
293 | "Chemical equilibrium" |
---|
294 | PP.LiquidFugacityCoefficient(Tsat, OutletL.P, xsat)*xsat = |
---|
295 | PP.VapourFugacityCoefficient(Tsat, OutletV.P, ysat)*ysat; |
---|
296 | |
---|
297 | "Global Molar Balance" |
---|
298 | Inlet.F = OutletV.F + OutletL.F; |
---|
299 | OutletV.F = Inlet.F * vfrac; |
---|
300 | |
---|
301 | "Component Molar Balance" |
---|
302 | Inlet.F*Inlet.z = OutletL.F*xsat + OutletV.F*ysat; |
---|
303 | sum(xsat) = sum(ysat); |
---|
304 | |
---|
305 | "Energy Balance if saturated" |
---|
306 | Inlet.F*Inlet.h + InletQ = |
---|
307 | Inlet.F*(1-vsat)*PP.LiquidEnthalpy(Tsat, OutletL.P, xsat) + |
---|
308 | Inlet.F*vsat*PP.VapourEnthalpy(Tsat, OutletV.P, ysat); |
---|
309 | |
---|
310 | "Real Energy Balance" |
---|
311 | Inlet.F*Inlet.h + InletQ = |
---|
312 | Inlet.F*(1-vfrac)*OutletL.h + Inlet.F*vfrac*OutletV.h; |
---|
313 | |
---|
314 | "Thermal Equilibrium" |
---|
315 | OutletV.T = OutletL.T; |
---|
316 | |
---|
317 | "Mechanical Equilibrium" |
---|
318 | OutletV.P = OutletL.P; |
---|
319 | |
---|
320 | "Pressure Drop" |
---|
321 | OutletL.P = Inlet.P - Pdrop; |
---|
322 | |
---|
323 | "Pressure Ratio" |
---|
324 | OutletL.P = Inlet.P * Pratio; |
---|
325 | |
---|
326 | # regularization functions |
---|
327 | zero_one = (1 + tanh(B * vsat))/2; |
---|
328 | one_zero = (1 - tanh(B * (vsat - 1)))/2; |
---|
329 | |
---|
330 | vfrac = zero_one * one_zero * vsat + 1 - one_zero; |
---|
331 | OutletL.z = zero_one*one_zero*xsat + (1-zero_one*one_zero)*Inlet.z; |
---|
332 | OutletV.z = zero_one*one_zero*ysat + (1-zero_one*one_zero)*Inlet.z; |
---|
333 | end |
---|