[698] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Author: Paula B. Staudt |
---|
| 17 | * $Id: condenser.mso 555 2008-07-18 19:01:13Z rafael $ |
---|
| 18 | *--------------------------------------------------------------------*# |
---|
| 19 | |
---|
| 20 | using "streams"; |
---|
| 21 | |
---|
| 22 | Model condenserSteady |
---|
[792] | 23 | |
---|
| 24 | ATTRIBUTES |
---|
[698] | 25 | Pallete = true; |
---|
| 26 | Icon = "icon/CondenserSteady"; |
---|
| 27 | Brief = "Model of a Steady State condenser with no thermodynamics equilibrium."; |
---|
| 28 | Info = |
---|
[792] | 29 | "== ASSUMPTIONS == |
---|
[698] | 30 | * perfect mixing of both phases; |
---|
| 31 | * no thermodynamics equilibrium. |
---|
[792] | 32 | |
---|
| 33 | == SET == |
---|
[698] | 34 | * the pressure drop in the condenser; |
---|
[792] | 35 | |
---|
| 36 | == SPECIFY == |
---|
| 37 | * the InletVapour stream; |
---|
| 38 | * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). |
---|
| 39 | |
---|
| 40 | == OPTIONAL == |
---|
| 41 | * the condenser model has two control ports |
---|
| 42 | ** TI OutletLiquid Temperature Indicator; |
---|
| 43 | ** PI OutletLiquid Pressure Indicator; |
---|
[698] | 44 | "; |
---|
| 45 | |
---|
| 46 | PARAMETERS |
---|
[792] | 47 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
| 48 | outer NComp as Integer (Brief = "Number of Components"); |
---|
[829] | 49 | |
---|
[802] | 50 | Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); |
---|
[792] | 51 | Pdrop as press_delta (Brief="Pressure Drop in the condenser",Default=0, Symbol="\Delta _P"); |
---|
[786] | 52 | |
---|
[802] | 53 | SET |
---|
| 54 | |
---|
| 55 | Mw = PP.MolecularWeight(); |
---|
| 56 | |
---|
[698] | 57 | VARIABLES |
---|
[801] | 58 | in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.16, PosY=0, Symbol="_{in}^{Vapour}"); |
---|
| 59 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.53, PosY=1, Symbol="_{out}^{Liquid}"); |
---|
| 60 | in InletQ as power (Brief="Heat Duty", PosX=1, PosY=0.08, Symbol="Q_{in}",Protected=true); |
---|
[802] | 61 | |
---|
| 62 | rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho"); |
---|
[827] | 63 | Tbubble as temperature (Brief ="Bubble Temperature",Protected=true, Symbol ="T_{bubble}"); |
---|
[830] | 64 | Deg_Subcooled as temp_delta (Brief ="Degrees subcooled",Symbol ="\Delta T_{subcooled}"); |
---|
[802] | 65 | |
---|
[801] | 66 | out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.50, PosY=0); |
---|
| 67 | out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.32, PosY=0); |
---|
[792] | 68 | |
---|
[698] | 69 | EQUATIONS |
---|
| 70 | |
---|
[784] | 71 | "Molar Flow Balance" |
---|
[735] | 72 | InletVapour.F = OutletLiquid.F; |
---|
[784] | 73 | |
---|
| 74 | "Molar Composition Balance" |
---|
[735] | 75 | InletVapour.z = OutletLiquid.z; |
---|
[698] | 76 | |
---|
| 77 | "Energy Balance" |
---|
[827] | 78 | InletVapour.F*InletVapour.h + InletQ = OutletLiquid.F*OutletLiquid.h; |
---|
[698] | 79 | |
---|
[802] | 80 | "Inlet Vapour Density" |
---|
| 81 | rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
| 82 | |
---|
[784] | 83 | "Pressure Drop" |
---|
| 84 | OutletLiquid.P = InletVapour.P - Pdrop; |
---|
[698] | 85 | |
---|
[827] | 86 | "Bubble Temperature" |
---|
| 87 | Tbubble = PP.BubbleT(OutletLiquid.P,OutletLiquid.z); |
---|
| 88 | |
---|
| 89 | "Temperature" |
---|
[829] | 90 | OutletLiquid.T = Tbubble-Deg_Subcooled; |
---|
[827] | 91 | |
---|
[792] | 92 | "Temperature indicator" |
---|
| 93 | TI * 'K' = OutletLiquid.T; |
---|
| 94 | |
---|
| 95 | "Pressure indicator" |
---|
| 96 | PI * 'atm' = OutletLiquid.P; |
---|
| 97 | |
---|
[698] | 98 | end |
---|
| 99 | |
---|
| 100 | Model condenserReact |
---|
| 101 | ATTRIBUTES |
---|
[721] | 102 | Pallete = false; |
---|
[698] | 103 | Icon = "icon/Condenser"; |
---|
| 104 | Brief = "Model of a Condenser with reaction in liquid phase."; |
---|
| 105 | Info = |
---|
| 106 | "== Assumptions == |
---|
| 107 | * perfect mixing of both phases; |
---|
| 108 | * thermodynamics equilibrium; |
---|
| 109 | * the reaction only takes place in liquid phase. |
---|
| 110 | |
---|
| 111 | == Specify == |
---|
| 112 | * the reaction related variables; |
---|
| 113 | * the inlet stream; |
---|
[735] | 114 | * the outlet flows: OutletVapour.F and OutletLiquid.F; |
---|
[698] | 115 | * the heat supply. |
---|
| 116 | |
---|
| 117 | == Initial Conditions == |
---|
[735] | 118 | * the condenser temperature (OutletLiquid.T); |
---|
[698] | 119 | * the condenser liquid level (Level); |
---|
[735] | 120 | * (NoComps - 1) OutletLiquid (OR OutletVapour) compositions. |
---|
[698] | 121 | "; |
---|
| 122 | |
---|
[721] | 123 | PARAMETERS |
---|
| 124 | outer PP as Plugin(Type="PP"); |
---|
[698] | 125 | outer NComp as Integer; |
---|
[721] | 126 | |
---|
| 127 | V as volume (Brief="Condenser total volume"); |
---|
| 128 | Across as area (Brief="Cross Section Area of reboiler"); |
---|
[698] | 129 | |
---|
[721] | 130 | stoic(NComp) as Real (Brief="Stoichiometric matrix"); |
---|
| 131 | Hr as energy_mol; |
---|
| 132 | Initial_Level as length (Brief="Initial Level of liquid phase"); |
---|
| 133 | Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); |
---|
| 134 | Initial_Composition(NComp) as fraction (Brief="Initial Liquid Composition"); |
---|
| 135 | |
---|
| 136 | VARIABLES |
---|
[698] | 137 | |
---|
[735] | 138 | in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.1164, PosY=0, Symbol="_{inV}"); |
---|
| 139 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.4513, PosY=1, Symbol="_{outL}"); |
---|
| 140 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.4723, PosY=0, Symbol="_{outV}"); |
---|
[721] | 141 | InletQ as power (Brief="Cold supplied", PosX=1, PosY=0.6311, Symbol="_{in}"); |
---|
[698] | 142 | |
---|
[721] | 143 | M(NComp) as mol (Brief="Molar Holdup in the tray"); |
---|
| 144 | ML as mol (Brief="Molar liquid holdup"); |
---|
| 145 | MV as mol (Brief="Molar vapour holdup"); |
---|
| 146 | E as energy (Brief="Total Energy Holdup on tray"); |
---|
| 147 | vL as volume_mol (Brief="Liquid Molar Volume"); |
---|
| 148 | vV as volume_mol (Brief="Vapour Molar volume"); |
---|
| 149 | Level as length (Brief="Level of liquid phase"); |
---|
| 150 | Vol as volume; |
---|
| 151 | r3 as reaction_mol (Brief="Reaction Rates", DisplayUnit = 'mol/l/s'); |
---|
| 152 | C(NComp) as conc_mol (Brief="Molar concentration", Lower = -1); |
---|
[698] | 153 | |
---|
[721] | 154 | INITIAL |
---|
| 155 | |
---|
| 156 | Level = Initial_Level; |
---|
[735] | 157 | OutletLiquid.T = Initial_Temperature; |
---|
| 158 | OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); |
---|
[721] | 159 | |
---|
| 160 | EQUATIONS |
---|
| 161 | "Molar Concentration" |
---|
[735] | 162 | OutletLiquid.z = vL * C; |
---|
[698] | 163 | |
---|
[721] | 164 | "Reaction" |
---|
[735] | 165 | r3 = exp(-7150*'K'/OutletLiquid.T)*(4.85e4*C(1)*C(2) - 1.23e4*C(3)*C(4)) * 'l/mol/s'; |
---|
[698] | 166 | |
---|
[721] | 167 | "Component Molar Balance" |
---|
[735] | 168 | diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z - OutletVapour.F*OutletVapour.z + stoic*r3*ML*vL; |
---|
[698] | 169 | |
---|
[721] | 170 | "Energy Balance" |
---|
[735] | 171 | diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ + Hr * r3 * ML*vL; |
---|
[698] | 172 | |
---|
[721] | 173 | "Molar Holdup" |
---|
[735] | 174 | M = ML*OutletLiquid.z + MV*OutletVapour.z; |
---|
[698] | 175 | |
---|
[721] | 176 | "Energy Holdup" |
---|
[735] | 177 | E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; |
---|
[698] | 178 | |
---|
[721] | 179 | "Mol fraction normalisation" |
---|
[735] | 180 | sum(OutletLiquid.z)=1.0; |
---|
[698] | 181 | |
---|
[721] | 182 | "Liquid Volume" |
---|
[735] | 183 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
[721] | 184 | |
---|
| 185 | "Vapour Volume" |
---|
[735] | 186 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
[698] | 187 | |
---|
[721] | 188 | "Thermal Equilibrium" |
---|
[735] | 189 | OutletLiquid.T = OutletVapour.T; |
---|
[698] | 190 | |
---|
[721] | 191 | "Mechanical Equilibrium" |
---|
[735] | 192 | OutletVapour.P = OutletLiquid.P; |
---|
[698] | 193 | |
---|
[721] | 194 | "Geometry Constraint" |
---|
[698] | 195 | V = ML*vL + MV*vV; |
---|
| 196 | |
---|
| 197 | Vol = ML*vL; |
---|
| 198 | |
---|
[721] | 199 | "Level of liquid phase" |
---|
[698] | 200 | Level = ML*vL/Across; |
---|
| 201 | |
---|
[721] | 202 | "Chemical Equilibrium" |
---|
[735] | 203 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = |
---|
| 204 | PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; |
---|
[698] | 205 | |
---|
[735] | 206 | sum(OutletLiquid.z)=sum(OutletVapour.z); |
---|
[698] | 207 | |
---|
| 208 | end |
---|
[755] | 209 | |
---|
[793] | 210 | Model condenser |
---|
| 211 | |
---|
| 212 | ATTRIBUTES |
---|
[755] | 213 | Pallete = true; |
---|
[793] | 214 | Icon = "icon/Condenser"; |
---|
[757] | 215 | Brief = "Model of a dynamic condenser with control."; |
---|
[755] | 216 | Info = |
---|
[793] | 217 | "== ASSUMPTIONS == |
---|
[755] | 218 | * perfect mixing of both phases; |
---|
| 219 | * thermodynamics equilibrium. |
---|
| 220 | |
---|
[793] | 221 | == SPECIFY == |
---|
| 222 | * the InletVapour stream; |
---|
[755] | 223 | * the outlet flows: OutletVapour.F and OutletLiquid.F; |
---|
[793] | 224 | * the InletQ (the model requires an energy stream, also you can use a controller for setting the heat duty using the heat_flow model). |
---|
| 225 | |
---|
| 226 | == OPTIONAL == |
---|
| 227 | * the condenser model has three control ports |
---|
| 228 | ** TI OutletLiquid Temperature Indicator; |
---|
| 229 | ** PI OutletLiquid Pressure Indicator; |
---|
| 230 | ** LI Level Indicator of Condenser; |
---|
| 231 | |
---|
| 232 | == INITIAL CONDITIONS == |
---|
[757] | 233 | * Initial_Temperature : the condenser temperature (OutletLiquid.T); |
---|
[821] | 234 | * Levelpercent_Initial : the condenser liquid level in percent (LI); |
---|
[757] | 235 | * Initial_Composition : (NoComps) OutletLiquid compositions. |
---|
[755] | 236 | "; |
---|
| 237 | |
---|
| 238 | PARAMETERS |
---|
[793] | 239 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
[757] | 240 | outer NComp as Integer (Brief="Number of Components"); |
---|
[768] | 241 | |
---|
| 242 | Mw(NComp) as molweight (Brief = "Component Mol Weight",Hidden=true); |
---|
[793] | 243 | low_flow as flow_mol (Brief = "Low Flow",Default = 1E-6, Hidden=true); |
---|
| 244 | zero_flow as flow_mol (Brief = "No Flow",Default = 0, Hidden=true); |
---|
| 245 | KfConst as area (Brief="Constant for K factor pressure drop", Default = 1, Hidden=true); |
---|
[768] | 246 | |
---|
[793] | 247 | VapourFlow as Switcher (Brief="Vapour Flow", Valid = ["on", "off"], Default = "on",Hidden=true); |
---|
[768] | 248 | |
---|
[793] | 249 | V as volume (Brief="Condenser total volume"); |
---|
| 250 | Across as area (Brief="Cross Section Area of condenser"); |
---|
| 251 | Kfactor as positive (Brief="K factor for pressure drop", Lower = 1E-8, Default = 1E-3); |
---|
[755] | 252 | |
---|
[821] | 253 | Levelpercent_Initial as positive (Brief="Initial liquid height in Percent", Default = 0.70); |
---|
[793] | 254 | Initial_Temperature as temperature (Brief="Initial Temperature of Condenser"); |
---|
| 255 | Initial_Composition(NComp) as positive (Brief="Initial Liquid Composition", Lower=1E-6); |
---|
[755] | 256 | |
---|
| 257 | VARIABLES |
---|
[757] | 258 | |
---|
[793] | 259 | in InletVapour as stream (Brief="Vapour inlet stream", PosX=0.13, PosY=0, Symbol="_{in}^{Vapour}"); |
---|
| 260 | out OutletLiquid as liquid_stream (Brief="Liquid outlet stream", PosX=0.35, PosY=1, Symbol="_{out}^{Liquid}"); |
---|
| 261 | out OutletVapour as vapour_stream (Brief="Vapour outlet stream", PosX=0.54, PosY=0, Symbol="_{out}^{Vapour}"); |
---|
| 262 | in InletQ as power (Brief="Heat supplied", Protected = true, PosX=1, PosY=0.08, Symbol="Q_{in}"); |
---|
[755] | 263 | |
---|
[793] | 264 | out TI as control_signal (Brief="Temperature Indicator of Condenser", Protected = true, PosX=0.33, PosY=0); |
---|
| 265 | out LI as control_signal (Brief="Level Indicator of Condenser", Protected = true, PosX=0.43, PosY=0); |
---|
| 266 | out PI as control_signal (Brief="Pressure Indicator of Condenser", Protected = true, PosX=0.25, PosY=0); |
---|
[757] | 267 | |
---|
[793] | 268 | M(NComp) as mol (Brief="Molar Holdup in the tray", Protected = true); |
---|
| 269 | ML as mol (Brief="Molar liquid holdup", Protected = true); |
---|
| 270 | MV as mol (Brief="Molar vapour holdup", Protected = true); |
---|
| 271 | E as energy (Brief="Total Energy Holdup on tray", Protected = true); |
---|
| 272 | vL as volume_mol (Brief="Liquid Molar Volume", Protected = true); |
---|
| 273 | vV as volume_mol (Brief="Vapour Molar volume", Protected = true); |
---|
| 274 | rho as dens_mass (Brief ="Inlet Vapour Mass Density",Hidden=true, Symbol ="\rho"); |
---|
| 275 | Level as length (Brief="Level of liquid phase", Protected = true); |
---|
| 276 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P", Protected=true); |
---|
[755] | 277 | |
---|
[768] | 278 | SET |
---|
| 279 | |
---|
| 280 | Mw = PP.MolecularWeight(); |
---|
[793] | 281 | low_flow = 1E-6 * 'kmol/h'; |
---|
| 282 | zero_flow = 0 * 'kmol/h'; |
---|
| 283 | KfConst = 1*'m^2'; |
---|
[768] | 284 | |
---|
[755] | 285 | INITIAL |
---|
| 286 | |
---|
[821] | 287 | "Initial level Percent" |
---|
| 288 | LI = Levelpercent_Initial; |
---|
[757] | 289 | |
---|
| 290 | "Initial Temperature" |
---|
[793] | 291 | OutletLiquid.T = Initial_Temperature; |
---|
[757] | 292 | |
---|
| 293 | "Initial Composition" |
---|
[793] | 294 | OutletLiquid.z(1:NComp-1) = Initial_Composition(1:NComp-1)/sum(Initial_Composition); |
---|
[768] | 295 | |
---|
[755] | 296 | EQUATIONS |
---|
[768] | 297 | |
---|
| 298 | switch VapourFlow |
---|
| 299 | |
---|
[793] | 300 | case "on": |
---|
| 301 | InletVapour.F*sum(Mw*InletVapour.z) = Kfactor *sqrt(Pdrop*rho)*KfConst; |
---|
[768] | 302 | |
---|
[793] | 303 | when InletVapour.F < low_flow switchto "off"; |
---|
[768] | 304 | |
---|
[793] | 305 | case "off": |
---|
| 306 | InletVapour.F = zero_flow; |
---|
[768] | 307 | |
---|
| 308 | when InletVapour.P > OutletLiquid.P switchto "on"; |
---|
| 309 | |
---|
| 310 | end |
---|
| 311 | |
---|
[755] | 312 | "Component Molar Balance" |
---|
| 313 | diff(M) = InletVapour.F*InletVapour.z - OutletLiquid.F*OutletLiquid.z- OutletVapour.F*OutletVapour.z; |
---|
| 314 | |
---|
| 315 | "Energy Balance" |
---|
| 316 | diff(E) = InletVapour.F*InletVapour.h - OutletLiquid.F*OutletLiquid.h- OutletVapour.F*OutletVapour.h + InletQ; |
---|
| 317 | |
---|
| 318 | "Molar Holdup" |
---|
| 319 | M = ML*OutletLiquid.z + MV*OutletVapour.z; |
---|
| 320 | |
---|
| 321 | "Energy Holdup" |
---|
| 322 | E = ML*OutletLiquid.h + MV*OutletVapour.h - OutletVapour.P*V; |
---|
| 323 | |
---|
| 324 | "Mol fraction normalisation" |
---|
| 325 | sum(OutletLiquid.z)=1.0; |
---|
[767] | 326 | |
---|
| 327 | "Mol fraction Constraint" |
---|
[755] | 328 | sum(OutletLiquid.z)=sum(OutletVapour.z); |
---|
| 329 | |
---|
| 330 | "Liquid Volume" |
---|
| 331 | vL = PP.LiquidVolume(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z); |
---|
| 332 | |
---|
| 333 | "Vapour Volume" |
---|
| 334 | vV = PP.VapourVolume(OutletVapour.T, OutletVapour.P, OutletVapour.z); |
---|
| 335 | |
---|
[768] | 336 | "Inlet Vapour Density" |
---|
| 337 | rho = PP.VapourDensity(InletVapour.T, InletVapour.P, InletVapour.z); |
---|
| 338 | |
---|
[755] | 339 | "Chemical Equilibrium" |
---|
| 340 | PP.LiquidFugacityCoefficient(OutletLiquid.T, OutletLiquid.P, OutletLiquid.z)*OutletLiquid.z = |
---|
| 341 | PP.VapourFugacityCoefficient(OutletVapour.T, OutletVapour.P, OutletVapour.z)*OutletVapour.z; |
---|
| 342 | |
---|
| 343 | "Thermal Equilibrium" |
---|
| 344 | OutletLiquid.T = OutletVapour.T; |
---|
| 345 | |
---|
| 346 | "Mechanical Equilibrium" |
---|
| 347 | OutletVapour.P = OutletLiquid.P; |
---|
| 348 | |
---|
[768] | 349 | "Pressure Drop" |
---|
| 350 | OutletLiquid.P = InletVapour.P - Pdrop; |
---|
| 351 | |
---|
[755] | 352 | "Geometry Constraint" |
---|
| 353 | V = ML*vL + MV*vV; |
---|
| 354 | |
---|
| 355 | "Level of liquid phase" |
---|
| 356 | Level = ML*vL/Across; |
---|
| 357 | |
---|
[757] | 358 | "Temperature indicator" |
---|
[793] | 359 | TI * 'K' = OutletLiquid.T; |
---|
[757] | 360 | |
---|
[767] | 361 | "Pressure indicator" |
---|
[793] | 362 | PI * 'atm' = OutletLiquid.P; |
---|
[767] | 363 | |
---|
[757] | 364 | "Level indicator" |
---|
[793] | 365 | LI*V = Level*Across; |
---|
[757] | 366 | |
---|
[755] | 367 | end |
---|