[574] | 1 | #*--------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Model of a stoichiometric reactor |
---|
| 17 | *---------------------------------------------------------------------- |
---|
| 18 | * |
---|
| 19 | * Description: |
---|
| 20 | * Modeling of a reactor based on a stoichiometric approach. |
---|
| 21 | * |
---|
| 22 | * Assumptions: |
---|
| 23 | * * single- and two-phases involved |
---|
| 24 | * * steady-state |
---|
| 25 | * |
---|
| 26 | * Specify: |
---|
| 27 | * * inlet stream |
---|
| 28 | * * extent of reactions or |
---|
| 29 | * * conversion of a key component |
---|
| 30 | * |
---|
| 31 | *---------------------------------------------------------------------- |
---|
| 32 | * Author: Rodolfo Rodrigues |
---|
| 33 | * $Id$ |
---|
| 34 | *--------------------------------------------------------------------*# |
---|
| 35 | |
---|
| 36 | using "tank_basic"; |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | #*--------------------------------------------------------------------- |
---|
| 40 | * only vapour-phase |
---|
| 41 | *--------------------------------------------------------------------*# |
---|
| 42 | Model stoic_vap as tank_vap |
---|
| 43 | ATTRIBUTES |
---|
| 44 | Brief = "Basic model for a vapour-phase stoichiometric CSTR"; |
---|
| 45 | Info = " |
---|
| 46 | == Assumptions == |
---|
| 47 | * only vapour-phase |
---|
| 48 | * steady-state |
---|
| 49 | "; |
---|
| 50 | |
---|
| 51 | PARAMETERS |
---|
| 52 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
| 53 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
| 54 | |
---|
| 55 | VARIABLES |
---|
| 56 | out Outlet as vapour_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
| 57 | |
---|
| 58 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
| 59 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); |
---|
| 60 | |
---|
| 61 | EQUATIONS |
---|
| 62 | "Outlet stream" |
---|
| 63 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
| 64 | |
---|
| 65 | "Mechanical equilibrium" |
---|
| 66 | Outlet.P = Outletm.P; |
---|
| 67 | |
---|
| 68 | "Energy balance" |
---|
| 69 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
| 70 | |
---|
| 71 | "Steady-state" |
---|
| 72 | Outlet.F = Outletm.F; |
---|
| 73 | |
---|
| 74 | for i in [1:NComp] do |
---|
| 75 | if (Outletm.z(i) > 1e-16) then |
---|
| 76 | "Molar conversion" |
---|
| 77 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
| 78 | else if (Outlet.z(i) > 0) then |
---|
| 79 | "Molar conversion" |
---|
| 80 | conv(i) = 1; # ? |
---|
| 81 | else |
---|
| 82 | "Molar conversion" |
---|
| 83 | conv(i) = 0; # ? |
---|
| 84 | end |
---|
| 85 | end |
---|
| 86 | end |
---|
| 87 | end |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | #*--------------------------------------------------------------------- |
---|
| 91 | * only liquid-phase |
---|
| 92 | *--------------------------------------------------------------------*# |
---|
| 93 | Model stoic_liq as tank_liq |
---|
| 94 | ATTRIBUTES |
---|
| 95 | Brief = "Basic model for a liquid-phase stoichiometric CSTR"; |
---|
| 96 | Info = " |
---|
| 97 | == Assumptions == |
---|
| 98 | * only liquid-phase |
---|
| 99 | * steady-state |
---|
| 100 | "; |
---|
| 101 | |
---|
| 102 | PARAMETERS |
---|
| 103 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
| 104 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
| 105 | |
---|
| 106 | VARIABLES |
---|
| 107 | out Outlet as liquid_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
| 108 | |
---|
| 109 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
| 110 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); |
---|
| 111 | |
---|
| 112 | EQUATIONS |
---|
| 113 | "Outlet stream" |
---|
| 114 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
| 115 | |
---|
| 116 | "Mechanical equilibrium" |
---|
| 117 | Outlet.P = Outletm.P; |
---|
| 118 | |
---|
| 119 | "Energy balance" |
---|
| 120 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
| 121 | |
---|
| 122 | "Steady-state" |
---|
| 123 | Outlet.F = Outletm.F; |
---|
| 124 | |
---|
| 125 | for i in [1:NComp] do |
---|
| 126 | if (Outletm.z(i) > 1e-16) then |
---|
| 127 | "Molar conversion" |
---|
| 128 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
| 129 | else if (Outlet.z(i) > 0) then |
---|
| 130 | "Molar conversion" |
---|
| 131 | conv(i) = 1; # ? |
---|
| 132 | else |
---|
| 133 | "Molar conversion" |
---|
| 134 | conv(i) = 0; # ? |
---|
| 135 | end |
---|
| 136 | end |
---|
| 137 | end |
---|
| 138 | end |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | #*--------------------------------------------------------------------- |
---|
| 142 | * 1. extent of reactions are known |
---|
| 143 | *--------------------------------------------------------------------*# |
---|
| 144 | Model stoic_extent_vap as stoic_vap |
---|
| 145 | ATTRIBUTES |
---|
| 146 | Pallete = true; |
---|
| 147 | Icon = "icon/cstr"; |
---|
| 148 | Brief = "Model of a generic vapour-phase stoichiometric CSTR based on extent of reaction"; |
---|
| 149 | Info = " |
---|
| 150 | == Specify == |
---|
| 151 | * inlet stream |
---|
| 152 | * extent of reactions |
---|
| 153 | "; |
---|
| 154 | |
---|
| 155 | VARIABLES |
---|
| 156 | extent(NReac) as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
| 157 | |
---|
| 158 | EQUATIONS |
---|
| 159 | "Rate of reaction" |
---|
| 160 | rate*Tank.V = sumt(stoic*extent); |
---|
| 161 | end |
---|
| 162 | |
---|
| 163 | Model stoic_extent_liq as stoic_liq |
---|
| 164 | ATTRIBUTES |
---|
| 165 | Pallete = true; |
---|
| 166 | Icon = "icon/cstr"; |
---|
| 167 | Brief = "Model of a generic liquid-phase stoichiometric CSTR based on extent of reaction"; |
---|
| 168 | Info = " |
---|
| 169 | == Specify == |
---|
| 170 | * inlet stream |
---|
| 171 | * extent of reactions |
---|
| 172 | "; |
---|
| 173 | |
---|
| 174 | VARIABLES |
---|
| 175 | extent(NReac) as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
| 176 | |
---|
| 177 | EQUATIONS |
---|
| 178 | "Rate of reaction" |
---|
| 179 | rate*Tank.V = sumt(stoic*extent); |
---|
| 180 | end |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | #*--------------------------------------------------------------------- |
---|
| 184 | * 2. conversion of a key component is known |
---|
| 185 | *--------------------------------------------------------------------*# |
---|
| 186 | Model stoic_conv_vap as stoic_vap |
---|
| 187 | ATTRIBUTES |
---|
| 188 | Pallete = true; |
---|
| 189 | Icon = "icon/cstr"; |
---|
| 190 | Brief = "Model of a generic vapour-phase stoichiometric CSTR based on conversion of a key component"; |
---|
| 191 | Info = " |
---|
| 192 | == Specify == |
---|
| 193 | * inlet stream |
---|
| 194 | * conversion of a key component |
---|
| 195 | "; |
---|
| 196 | |
---|
| 197 | PARAMETERS |
---|
| 198 | KComp as Integer(Brief="Key component", Lower=1, Default=1); |
---|
| 199 | |
---|
| 200 | VARIABLES |
---|
| 201 | kconv as Real (Brief="Molar conversion of key component", Symbol="X_k"); |
---|
| 202 | |
---|
| 203 | EQUATIONS |
---|
| 204 | "Reaction rate" |
---|
| 205 | rate*Tank.V = sumt(stoic)/abs(sumt(stoic(KComp,:)))*Outletm.F*Outletm.z(KComp)*kconv; |
---|
| 206 | end |
---|
| 207 | |
---|
| 208 | Model stoic_conv_liq as stoic_liq |
---|
| 209 | ATTRIBUTES |
---|
| 210 | Pallete = true; |
---|
| 211 | Icon = "icon/cstr"; |
---|
| 212 | Brief = "Model of a generic liquid-phase stoichiometric CSTR based on conversion of a key component"; |
---|
| 213 | Info = " |
---|
| 214 | == Specify == |
---|
| 215 | * inlet stream |
---|
| 216 | * conversion of a key component |
---|
| 217 | "; |
---|
| 218 | |
---|
| 219 | PARAMETERS |
---|
| 220 | KComp as Integer(Brief="Key component", Lower=1, Default=1); |
---|
| 221 | |
---|
| 222 | VARIABLES |
---|
| 223 | kconv as Real (Brief="Molar conversion of key component", Symbol="X_k"); |
---|
| 224 | |
---|
| 225 | EQUATIONS |
---|
| 226 | "Reaction rate" |
---|
| 227 | rate*Tank.V = sumt(stoic)/abs(sumt(stoic(KComp,:)))*Outletm.F*Outletm.z(KComp)*kconv; |
---|
| 228 | end |
---|