[574] | 1 | #*--------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *---------------------------------------------------------------------- |
---|
| 16 | * Model of an equilibrium reactor |
---|
| 17 | *---------------------------------------------------------------------- |
---|
| 18 | * |
---|
| 19 | * Description: |
---|
| 20 | * Thermodynamic equilibrium modeling of a reactor based on |
---|
| 21 | * equilibrium constants approach. |
---|
| 22 | * |
---|
| 23 | * Assumptions: |
---|
| 24 | * * single-phases involved |
---|
| 25 | * * thermodynamic equilibrium |
---|
| 26 | * * steady-state |
---|
| 27 | * |
---|
| 28 | * Specify: |
---|
| 29 | * * inlet stream |
---|
| 30 | * * stoichiometric matrix |
---|
| 31 | * * equilibrium temperature |
---|
| 32 | * |
---|
| 33 | *---------------------------------------------------------------------- |
---|
| 34 | * Author: Rodolfo Rodrigues |
---|
| 35 | * $Id$ |
---|
| 36 | *--------------------------------------------------------------------*# |
---|
| 37 | |
---|
| 38 | using "tank_basic"; |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | #*--------------------------------------------------------------------- |
---|
| 42 | * only vapour phase |
---|
| 43 | *--------------------------------------------------------------------*# |
---|
| 44 | Model equil_vap as tank_vap |
---|
| 45 | ATTRIBUTES |
---|
| 46 | Pallete = true; |
---|
| 47 | Icon = "icon/cstr"; |
---|
| 48 | Brief = "Model of a generic vapour-phase equilibrium CSTR"; |
---|
| 49 | Info = " |
---|
| 50 | == Assumptions == |
---|
| 51 | * only vapour-phase |
---|
| 52 | * thermodynamic equilibrium |
---|
| 53 | * steady-state |
---|
| 54 | |
---|
| 55 | == Specify == |
---|
| 56 | * inlet stream |
---|
| 57 | * stoichiometric matrix |
---|
| 58 | * equilibrium temperature |
---|
| 59 | "; |
---|
| 60 | |
---|
| 61 | PARAMETERS |
---|
| 62 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
| 63 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
| 64 | Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
| 65 | fs(NComp) as pressure (Brief="Fugacity in standard state", Default=1, DisplayUnit='atm'); |
---|
| 66 | To as temperature (Brief="Reference temperature", Default=298.15); |
---|
| 67 | |
---|
| 68 | VARIABLES |
---|
| 69 | out Outlet as vapour_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
| 70 | |
---|
| 71 | G(NComp) as energy_mol (Brief="Gibbs free-energy of formation"); |
---|
| 72 | K(NReac) as Real (Brief="Equillibrium constant", Lower=0, Default=1.5); |
---|
| 73 | activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}", Lower=0, Default=0.2); |
---|
| 74 | |
---|
| 75 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
| 76 | extent(NReac) as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
| 77 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); # Lower=-1e3, Upper=1e3); |
---|
| 78 | |
---|
| 79 | EQUATIONS |
---|
| 80 | "Outlet stream" |
---|
| 81 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
| 82 | |
---|
| 83 | "Mechanical equilibrium" |
---|
| 84 | Outlet.P = Outletm.P; |
---|
| 85 | |
---|
| 86 | "Energy balance" |
---|
| 87 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
| 88 | |
---|
| 89 | "Steady-state" |
---|
| 90 | Outlet.F = Inlet.F + sum(sumt(stoic*extent)); |
---|
| 91 | |
---|
| 92 | "Gibbs free-energy of formation" |
---|
| 93 | G = PP.IdealGasGibbsOfFormation(Outlet.T); |
---|
| 94 | |
---|
| 95 | # "Gibbs free-energy of formation without Cp correction" |
---|
| 96 | # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To |
---|
| 97 | # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); |
---|
| 98 | |
---|
| 99 | for j in [1:NReac] do |
---|
| 100 | "Gibbs free energy of reaction" |
---|
| 101 | sumt(G*stoic(:,j)) = -Rg*Outlet.T*ln(K(j)); |
---|
| 102 | # K(j) = exp(-sumt(G*stoic(:,j))/(Rg*Outlet.T)); |
---|
| 103 | |
---|
| 104 | "Equilibrium constant" |
---|
| 105 | K(j) = prod(activ^stoic(:,j)); |
---|
| 106 | end |
---|
| 107 | |
---|
| 108 | for i in [1:NComp] do |
---|
| 109 | "Outlet molar fraction" |
---|
| 110 | Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); |
---|
| 111 | end |
---|
| 112 | |
---|
| 113 | for i in [1:NComp] do |
---|
| 114 | if (Outletm.z(i) > 1e-16) then |
---|
| 115 | "Molar conversion" |
---|
| 116 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
| 117 | else if (Outlet.z(i) > 0) then |
---|
| 118 | "Molar conversion" |
---|
| 119 | conv(i) = 1; # ? |
---|
| 120 | else |
---|
| 121 | "Molar conversion" |
---|
| 122 | conv(i) = 0; # ? |
---|
| 123 | end |
---|
| 124 | end |
---|
| 125 | end |
---|
| 126 | |
---|
| 127 | "Activity" |
---|
| 128 | activ = PP.VapourFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.P*Outlet.z/fs; |
---|
| 129 | end |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | #*--------------------------------------------------------------------- |
---|
| 133 | * only liquid-phase |
---|
| 134 | *--------------------------------------------------------------------*# |
---|
| 135 | Model equil_liq as tank_liq |
---|
| 136 | ATTRIBUTES |
---|
| 137 | Pallete = true; |
---|
| 138 | Icon = "icon/cstr"; |
---|
| 139 | Brief = "Model of a generic liquid-phase equilibrium CSTR"; |
---|
| 140 | Info = " |
---|
| 141 | == Assumptions == |
---|
| 142 | * only liquid-phase |
---|
| 143 | * thermodynamic equilibrium |
---|
| 144 | * steady-state |
---|
| 145 | |
---|
| 146 | == Specify == |
---|
| 147 | * inlet stream |
---|
| 148 | * stoichiometric matrix |
---|
| 149 | * equilibrium temperature |
---|
| 150 | "; |
---|
| 151 | |
---|
| 152 | PARAMETERS |
---|
| 153 | NReac as Integer (Brief="Number of reactions", Default=1); |
---|
| 154 | stoic(NComp,NReac) as Real (Brief="Stoichiometric matrix", Symbol="\nu"); |
---|
| 155 | Rg as Real (Brief="Universal gas constant", Unit='J/mol/K', Default=8.314); |
---|
| 156 | Ps as pressure (Brief="Standard pressure", Default=1, DisplayUnit='bar'); |
---|
| 157 | To as temperature (Brief="Reference temperature", Default=298.15); |
---|
| 158 | |
---|
| 159 | VARIABLES |
---|
| 160 | out Outlet as liquid_stream(Brief="Outlet stream", PosX=1, PosY=1, Symbol="_{out}"); |
---|
| 161 | |
---|
| 162 | G(NReac) as enth_mol (Brief="Gibbs free-energy of formation"); |
---|
| 163 | K(NReac) as fraction (Brief="Equillibrium constant"); |
---|
| 164 | activ(NComp)as Real (Brief="Activity", Symbol="\hat{a}"); |
---|
| 165 | |
---|
| 166 | rate(NComp) as reaction_mol (Brief="Overall component rate of reaction"); |
---|
| 167 | extent(NReac)as flow_mol (Brief="Extent of reaction", Symbol="\xi"); |
---|
| 168 | conv(NComp) as Real (Brief="Fractional conversion of component", Symbol="X", Default=0); |
---|
| 169 | |
---|
| 170 | EQUATIONS |
---|
| 171 | "Outlet stream" |
---|
| 172 | Outlet.F*Outlet.z = Outletm.F*Outletm.z + rate*Tank.V; |
---|
| 173 | |
---|
| 174 | "Mechanical equilibrium" |
---|
| 175 | Outlet.P = Outletm.P; |
---|
| 176 | |
---|
| 177 | "Energy balance" |
---|
| 178 | Outlet.F*Outlet.h = Outletm.F*Outletm.h; |
---|
| 179 | |
---|
| 180 | "Steady-state" |
---|
| 181 | Outlet.F = Inlet.F + sum(sumt(stoic*extent)); |
---|
| 182 | |
---|
| 183 | "Gibbs free-energy of formation" |
---|
| 184 | G = PP.IdealGasGibbsOfFormation(Outlet.T); |
---|
| 185 | |
---|
| 186 | # "Gibbs free-energy of formation without Cp correction" |
---|
| 187 | # G = PP.IdealGasGibbsOfFormationAt25C()*Outlet.T/To |
---|
| 188 | # + PP.IdealGasEnthalpyOfFormationAt25C()*(1 - Outlet.T/To); |
---|
| 189 | |
---|
| 190 | "Gibbs free energy of reaction" |
---|
| 191 | sumt(G*stoic) = -Rg*Outlet.T*ln(K); |
---|
| 192 | # K = exp(-sumt(G*stoic)/(Rg*Outlet.T)); |
---|
| 193 | |
---|
| 194 | for j in [1:NReac] do |
---|
| 195 | "Equilibrium constant" |
---|
| 196 | K(j) = prod(activ^stoic(:,j)); |
---|
| 197 | end |
---|
| 198 | |
---|
| 199 | for i in [1:NComp] do |
---|
| 200 | "Outlet molar fraction" |
---|
| 201 | Outlet.F*Outlet.z(i) = (Inlet.F*Inlet.z(i) + sumt(stoic(i,:)*extent)); |
---|
| 202 | end |
---|
| 203 | |
---|
| 204 | for i in [1:NComp] do |
---|
| 205 | if (Outletm.z(i) > 1e-16) then |
---|
| 206 | "Molar conversion" |
---|
| 207 | Outlet.F*Outlet.z(i) = Outletm.F*Outletm.z(i)*(1 - conv(i)); |
---|
| 208 | else if (Outlet.z(i) > 0) then |
---|
| 209 | "Molar conversion" |
---|
| 210 | conv(i) = 1; # ? |
---|
| 211 | else |
---|
| 212 | "Molar conversion" |
---|
| 213 | conv(i) = 0; # ? |
---|
| 214 | end |
---|
| 215 | end |
---|
| 216 | end |
---|
| 217 | |
---|
| 218 | "Activity" |
---|
| 219 | activ = PP.LiquidFugacityCoefficient(Outlet.T,Outlet.P,Outlet.z)*Outlet.z |
---|
| 220 | *exp(PP.LiquidVolume(Outlet.T,Outlet.P,Outlet.z)*(Outlet.P - Ps)/Rg/Outlet.T); |
---|
| 221 | end |
---|