1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *--------------------------------------------------------------------- |
---|
16 | * Author: Estefane Horn, Núbia do Carmo Ferreira |
---|
17 | *$Id: valve.mso 586 2008-08-01 19:40:50Z bicca $ |
---|
18 | *-------------------------------------------------------------------*# |
---|
19 | |
---|
20 | using "streams"; |
---|
21 | |
---|
22 | |
---|
23 | Model valve |
---|
24 | ATTRIBUTES |
---|
25 | Pallete = true; |
---|
26 | Icon = "icon/Valve"; |
---|
27 | Brief = "Model of a valve."; |
---|
28 | Info = |
---|
29 | "== Model of valves == |
---|
30 | * Linear; |
---|
31 | * Parabolic; |
---|
32 | * Equal; |
---|
33 | * Quick; |
---|
34 | * Hyperbolic. |
---|
35 | |
---|
36 | == Assumptions == |
---|
37 | * Steady State; |
---|
38 | * Liquid; |
---|
39 | * Isentalpic. |
---|
40 | |
---|
41 | == Specify == |
---|
42 | * the valve type; |
---|
43 | * the inlet stream; |
---|
44 | * the Volumetric Flow (Qv); |
---|
45 | * the Valve Coefficient (cv); |
---|
46 | * the opening (x). |
---|
47 | "; |
---|
48 | |
---|
49 | PARAMETERS |
---|
50 | valve_type as Switcher (Valid = ["linear", "parabolic", "equal", "quick", "hyperbolic"], Default = "linear"); |
---|
51 | outer PP as Plugin (Brief = "External Physical Properties", Type = "PP"); |
---|
52 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
53 | rho60F as dens_mass; |
---|
54 | |
---|
55 | VARIABLES |
---|
56 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
57 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
58 | Qv as flow_vol (Brief = "Volumetric Flow"); |
---|
59 | fc as positive (Brief = "Opening Function"); |
---|
60 | cv as positive (Brief = "Valve Coefficient", Unit = 'm^3/h/kPa^0.5'); |
---|
61 | Gf as positive (Brief = "Specific Gravity"); |
---|
62 | rho as dens_mass; |
---|
63 | vm as vol_mol (Brief = "Mixture Molar Volume"); |
---|
64 | x as fraction (Brief = "Opening"); |
---|
65 | in Inlet as stream (Brief = "Inlet stream", PosX=0, PosY=0.7365, Symbol="_{in}"); |
---|
66 | out Outlet as streamPH (Brief = "Outlet stream", PosX=1, PosY=0.7365, Symbol="_{out}"); |
---|
67 | |
---|
68 | SET |
---|
69 | rho60F = 999.02 * 'kg/m^3'; |
---|
70 | |
---|
71 | EQUATIONS |
---|
72 | "Pressure Drop" |
---|
73 | Outlet.P = Inlet.P - Pdrop; |
---|
74 | |
---|
75 | "Pressure Ratio" |
---|
76 | Outlet.P = Inlet.P * Pratio; |
---|
77 | |
---|
78 | "Enthalpy Balance" |
---|
79 | Outlet.h = Inlet.h; |
---|
80 | |
---|
81 | "Molar Balance" |
---|
82 | Outlet.F = Inlet.F; |
---|
83 | |
---|
84 | "Calculate Outlet Composition" |
---|
85 | Outlet.z = Inlet.z; |
---|
86 | |
---|
87 | if Pdrop > 0 then |
---|
88 | "Valve Equation - Flow" |
---|
89 | Qv = fc*cv*sqrt(Pdrop/Gf); |
---|
90 | else |
---|
91 | "Valve Equation - Closed" |
---|
92 | Qv = 0 * 'm^3/h'; |
---|
93 | end |
---|
94 | |
---|
95 | "Calculate Gf" |
---|
96 | Gf = rho/rho60F; |
---|
97 | |
---|
98 | "Calculate Specific Mass" |
---|
99 | rho = PP.LiquidDensity(Inlet.T,Inlet.P,Inlet.z); |
---|
100 | |
---|
101 | "Calculate Mass Flow" |
---|
102 | Qv = Inlet.F*vm; |
---|
103 | |
---|
104 | "Calculate Liquid Molar Volume" |
---|
105 | vm = PP.LiquidVolume(Inlet.T,Inlet.P,Inlet.z); |
---|
106 | |
---|
107 | switch valve_type |
---|
108 | case "linear": |
---|
109 | |
---|
110 | "Opening Equation" |
---|
111 | fc = x; |
---|
112 | |
---|
113 | case "parabolic": |
---|
114 | |
---|
115 | "Opening Equation" |
---|
116 | fc = x^2; |
---|
117 | |
---|
118 | case "equal": |
---|
119 | |
---|
120 | "Opening Equation" |
---|
121 | fc = x^2/(2-x^4)^(1/2); |
---|
122 | |
---|
123 | case "quick": |
---|
124 | |
---|
125 | "Opening Equation" |
---|
126 | fc = 10*x/sqrt(1+99*x^2); |
---|
127 | |
---|
128 | case "hyperbolic": |
---|
129 | |
---|
130 | "Opening Equation" |
---|
131 | fc = 0.1*x/sqrt(1-0.99*x^2); |
---|
132 | |
---|
133 | end |
---|
134 | |
---|
135 | end |
---|
136 | |
---|
137 | #*------------------------------------------------------------------- |
---|
138 | * Model of a valve (simplified) |
---|
139 | *-------------------------------------------------------------------- |
---|
140 | * |
---|
141 | * Author: Paula B. Staudt |
---|
142 | *--------------------------------------------------------------------*# |
---|
143 | Model valve_simplified |
---|
144 | ATTRIBUTES |
---|
145 | Pallete = true; |
---|
146 | Icon = "icon/Valve"; |
---|
147 | Brief = "Model of a very simple valve - used in distillation column models."; |
---|
148 | Info = |
---|
149 | "== Assumptions == |
---|
150 | * no flashing liquid in the valve; |
---|
151 | * the flow in the valve is adiabatic; |
---|
152 | * dynamics in the valve are neglected; |
---|
153 | * linear flow type. |
---|
154 | |
---|
155 | == Specify == |
---|
156 | * the inlet stream |
---|
157 | * the plug position (x) OR outlet temperature (Outlet.T) OR outlet pressure (Outlet.P) |
---|
158 | |
---|
159 | OR |
---|
160 | |
---|
161 | * the inlet stream excluding its flow (Inlet.F) |
---|
162 | * the outlet pressure (Outlet.P) OR outlet flow (Outlet.F) |
---|
163 | * the plug position (x) |
---|
164 | "; |
---|
165 | |
---|
166 | PARAMETERS |
---|
167 | outer PP as Plugin(Type="PP"); |
---|
168 | outer NComp as Integer; |
---|
169 | |
---|
170 | VARIABLES |
---|
171 | in Inlet as stream (Brief = "Inlet stream", PosX=0, PosY=0.7365, Symbol="_{in}"); |
---|
172 | out Outlet as streamPH (Brief = "Outlet stream", PosX=1, PosY=0.7365, Symbol="_{out}"); |
---|
173 | x as fraction (Brief="Plug Position"); |
---|
174 | rho as dens_mass (Brief="Fluid Density", Default=1e3); |
---|
175 | v as vol_mol (Brief="Specific volume", Default=1e3); |
---|
176 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
177 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
178 | |
---|
179 | PARAMETERS |
---|
180 | rho_ref as dens_mass (Brief="Reference Density", Default=1e4); |
---|
181 | k as Real (Brief="Valve Constant", Unit='gal/min/psi^0.5'); |
---|
182 | |
---|
183 | EQUATIONS |
---|
184 | "Overall Molar Balance" |
---|
185 | Inlet.F = Outlet.F; |
---|
186 | |
---|
187 | "Componente Molar Balance" |
---|
188 | Inlet.z = Outlet.z; |
---|
189 | |
---|
190 | "Energy Balance" |
---|
191 | Inlet.h = Outlet.h; |
---|
192 | |
---|
193 | "Pressure Drop" |
---|
194 | Outlet.P = Inlet.P - Pdrop; |
---|
195 | |
---|
196 | "Pressure Ratio" |
---|
197 | Outlet.P = Inlet.P * Pratio; |
---|
198 | |
---|
199 | "Density" |
---|
200 | rho = Inlet.v*PP.VapourDensity((Inlet.T+Outlet.T)/2, (Inlet.P+Outlet.P)/2, Outlet.z) + |
---|
201 | (1-Inlet.v)*PP.LiquidDensity((Inlet.T+Outlet.T)/2, (Inlet.P+Outlet.P)/2, Outlet.z); |
---|
202 | |
---|
203 | "Volume" |
---|
204 | v = Inlet.v*PP.VapourVolume((Inlet.T+Outlet.T)/2, (Inlet.P+Outlet.P)/2, Outlet.z) + |
---|
205 | (1-Inlet.v)*PP.LiquidVolume((Inlet.T+Outlet.T)/2, (Inlet.P+Outlet.P)/2, Outlet.z); |
---|
206 | |
---|
207 | if Pdrop > 0 then |
---|
208 | "Flow" |
---|
209 | Outlet.F * v = k*x*sqrt(Pdrop * rho_ref / rho ) ; |
---|
210 | else |
---|
211 | "Closed" |
---|
212 | Outlet.F = 0 * 'kmol/h'; |
---|
213 | end |
---|
214 | end |
---|
215 | |
---|
216 | |
---|
217 | Model valve_flow |
---|
218 | ATTRIBUTES |
---|
219 | Pallete = true; |
---|
220 | Icon = "icon/Valve"; |
---|
221 | Brief = "Model of a very simple valve for setting the flow with a controller."; |
---|
222 | Info = |
---|
223 | "== Assumptions == |
---|
224 | * nothing happens in this valve |
---|
225 | |
---|
226 | == Specify == |
---|
227 | * the inlet stream |
---|
228 | * the flow fraction |
---|
229 | "; |
---|
230 | |
---|
231 | PARAMETERS |
---|
232 | outer PP as Plugin(Type="PP"); |
---|
233 | outer NComp as Integer; |
---|
234 | |
---|
235 | MinFlow as flow_mol(Default=0); |
---|
236 | MaxFlow as flow_mol(Default=1000); |
---|
237 | |
---|
238 | VARIABLES |
---|
239 | in Inlet as stream (Brief = "Inlet stream", PosX=0, PosY=0.7365, Symbol="_{in}"); |
---|
240 | out Outlet as stream (Brief = "Outlet stream", PosX=1, PosY=0.7365, Symbol="_{out}"); |
---|
241 | in FlowFraction as fraction (Brief="Flow Signal", PosX=0.5, PosY=0); |
---|
242 | |
---|
243 | EQUATIONS |
---|
244 | "Overall Molar Balance" |
---|
245 | Outlet.F = Inlet.F; |
---|
246 | "Temperature" |
---|
247 | Outlet.T = Inlet.T; |
---|
248 | "Pressure" |
---|
249 | Outlet.P = Inlet.P; |
---|
250 | "Energy Balance" |
---|
251 | Outlet.h = Inlet.h; |
---|
252 | "Vapour fraction" |
---|
253 | Outlet.v = Inlet.v; |
---|
254 | |
---|
255 | "Componente Molar Balance" |
---|
256 | Outlet.z = Inlet.z; |
---|
257 | |
---|
258 | "Flow computation" |
---|
259 | Outlet.F = MinFlow + FlowFraction*(MaxFlow-MinFlow); |
---|
260 | end |
---|
261 | |
---|
262 | Model valve_liquid_test |
---|
263 | ATTRIBUTES |
---|
264 | Pallete = true; |
---|
265 | Icon = "icon/Valve"; |
---|
266 | Brief = "testing Model of a valve."; |
---|
267 | |
---|
268 | |
---|
269 | PARAMETERS |
---|
270 | valve_type as Switcher (Valid = ["linear", "parabolic", "equal", "quick", "hyperbolic"], Default = "linear"); |
---|
271 | outer PP as Plugin (Brief = "External Physical Properties", Type = "PP"); |
---|
272 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
273 | rho60F as dens_mass; |
---|
274 | tau as time_sec (Brief="valve time constant"); |
---|
275 | |
---|
276 | VARIABLES |
---|
277 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
278 | Qv as flow_vol (Brief = "Volumetric Flow"); |
---|
279 | fc as positive (Brief = "Opening Function"); |
---|
280 | cv as positive (Brief = "Valve Coefficient", Unit = 'm^3/h/kPa^0.5'); |
---|
281 | Gf as positive (Brief = "Specific Gravity"); |
---|
282 | rho as dens_mass; |
---|
283 | vm as vol_mol (Brief = "Mixture Molar Volume"); |
---|
284 | vactual as fraction (Brief = "Actual valve stem position"); |
---|
285 | vsp as fraction (Brief = "Valve stem position"); |
---|
286 | in Inlet as stream (Brief = "Inlet stream", PosX=0, PosY=0.7365, Symbol="_{in}"); |
---|
287 | out Outlet as streamPH (Brief = "Outlet stream", PosX=1, PosY=0.7365, Symbol="_{out}"); |
---|
288 | in vsignal as fraction (Brief="Flow Signal", PosX=0.5, PosY=0); |
---|
289 | |
---|
290 | SET |
---|
291 | rho60F = 999.02 * 'kg/m^3'; |
---|
292 | |
---|
293 | EQUATIONS |
---|
294 | |
---|
295 | "valve dynamics" |
---|
296 | tau*diff(vactual) = vsp-vactual; |
---|
297 | |
---|
298 | vsp=vsignal; |
---|
299 | |
---|
300 | "Pressure Drop" |
---|
301 | Outlet.P = Inlet.P - Pdrop; |
---|
302 | |
---|
303 | "Enthalpy Balance" |
---|
304 | Outlet.h = Inlet.h; |
---|
305 | |
---|
306 | "Molar Balance" |
---|
307 | Outlet.F = Inlet.F; |
---|
308 | |
---|
309 | "Outlet Composition" |
---|
310 | Outlet.z = Inlet.z; |
---|
311 | |
---|
312 | if Pdrop > 0 then # update the flow equation !!!! |
---|
313 | |
---|
314 | "Valve Equation - Flow" |
---|
315 | Qv = 1000*fc*cv*sqrt(Pdrop/Gf); |
---|
316 | |
---|
317 | else |
---|
318 | |
---|
319 | "Valve Equation - Closed" |
---|
320 | Qv = 0.1*fc*cv*sqrt(Pdrop/Gf); |
---|
321 | |
---|
322 | end |
---|
323 | |
---|
324 | "Calculate Gf" |
---|
325 | Gf = rho/rho60F; |
---|
326 | |
---|
327 | "Calculate Specific Mass" |
---|
328 | rho = PP.LiquidDensity(Inlet.T,Inlet.P,Inlet.z); |
---|
329 | |
---|
330 | "Calculate Mass Flow" |
---|
331 | Qv = Inlet.F*vm; |
---|
332 | |
---|
333 | "Calculate Liquid Molar Volume" |
---|
334 | vm = PP.LiquidVolume(Inlet.T,Inlet.P,Inlet.z); |
---|
335 | |
---|
336 | switch valve_type # update the valve characteristic !!!! |
---|
337 | case "linear": |
---|
338 | |
---|
339 | "Opening Equation" |
---|
340 | fc = vactual; |
---|
341 | |
---|
342 | case "parabolic": |
---|
343 | |
---|
344 | "Opening Equation" |
---|
345 | fc = vactual^2; |
---|
346 | |
---|
347 | case "equal": |
---|
348 | |
---|
349 | "Opening Equation" |
---|
350 | fc = vactual^2/(2-vactual^4)^(1/2); |
---|
351 | |
---|
352 | case "quick": |
---|
353 | |
---|
354 | "Opening Equation" |
---|
355 | fc = 10*vactual/sqrt(1+99*vactual^2); |
---|
356 | |
---|
357 | case "hyperbolic": |
---|
358 | |
---|
359 | "Opening Equation" |
---|
360 | fc = 0.1*vactual/sqrt(1-0.99*vactual^2); |
---|
361 | |
---|
362 | end |
---|
363 | |
---|
364 | end |
---|
365 | |
---|