1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | * |
---|
15 | *---------------------------------------------------------------------- |
---|
16 | * Authors: Rafael de Pelegrini Soares |
---|
17 | * Andrey Copat, Estefane S. Horn, Marcos L. Alencastro |
---|
18 | * $Id: turbine.mso 609 2008-08-25 22:10:03Z bicca $ |
---|
19 | *--------------------------------------------------------------------*# |
---|
20 | |
---|
21 | using "streams"; |
---|
22 | |
---|
23 | #Needs to be reformulated |
---|
24 | |
---|
25 | Model HidraulicTurbine |
---|
26 | ATTRIBUTES |
---|
27 | Pallete = true; |
---|
28 | Icon = "icon/HidraulicTurbine"; |
---|
29 | Brief = "Testing Model of a Hidraulic Turbine."; |
---|
30 | |
---|
31 | PARAMETERS |
---|
32 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
33 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
34 | Mw(NComp) as molweight (Brief = "Molar Weight"); |
---|
35 | |
---|
36 | VARIABLES |
---|
37 | Eff as efficiency (Brief = "Turbine efficiency"); |
---|
38 | Meff as efficiency (Brief = "Brake efficiency"); |
---|
39 | Beta as positive (Brief = "Volumetric expansivity", Unit = '1/K'); |
---|
40 | Head as head (Brief = "Head Developed"); |
---|
41 | FPower as power (Brief = "Fluid Power"); |
---|
42 | BPower as power (Brief = "Brake Power"); |
---|
43 | Pratio as positive (Brief = "Pressure Ratio"); |
---|
44 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
45 | Mwm as molweight (Brief = "Mixture Molar Weight"); |
---|
46 | rho as dens_mass (Brief = "Specific Mass"); |
---|
47 | Cp as cp_mol (Brief = "Heat Capacity"); |
---|
48 | in Inlet as stream (Brief = "Inlet stream", PosX=0.05, PosY=0.0, Symbol="_{in}"); |
---|
49 | out Outlet as stream (Brief = "Outlet stream", PosX=0.65, PosY=1, Symbol="_{out}"); |
---|
50 | out WorkOut as power (Brief = "Work Outlet", PosX=1, PosY=0.46); |
---|
51 | |
---|
52 | SET |
---|
53 | Mw = PP.MolecularWeight(); |
---|
54 | |
---|
55 | EQUATIONS |
---|
56 | #Mixtures Properties |
---|
57 | "Calculate Mwm for Inlet Mixture" |
---|
58 | Mwm = sum(Mw*Inlet.z); |
---|
59 | |
---|
60 | "Calculate rho using a External Physical Properties Routine" |
---|
61 | rho = PP.LiquidDensity(Inlet.T,Inlet.P,Inlet.z); |
---|
62 | |
---|
63 | "Calculate Outlet Vapour Fraction" |
---|
64 | Outlet.v = PP.VapourFraction(Outlet.T, Outlet.P, Outlet.z); |
---|
65 | |
---|
66 | "Calculate Cp Using a External Physical Properties Routine" |
---|
67 | Cp = PP.LiquidCp(Inlet.T,Inlet.P,Inlet.z); |
---|
68 | |
---|
69 | "Pressure Ratio" |
---|
70 | Outlet.P = Inlet.P * Pratio; |
---|
71 | |
---|
72 | "Pressure Drop" |
---|
73 | Outlet.P = Inlet.P - Pdrop; |
---|
74 | |
---|
75 | "Calculate Fluid Power" |
---|
76 | FPower * rho = -Pdrop * Inlet.F * Mwm; |
---|
77 | |
---|
78 | "Calculate Brake Power" |
---|
79 | BPower = FPower * Eff; |
---|
80 | |
---|
81 | BPower = WorkOut; |
---|
82 | |
---|
83 | "Calculate Outlet Temperature" |
---|
84 | (Outlet.T - Inlet.T) * rho * Cp = (Outlet.h - Inlet.h) * rho |
---|
85 | + Pdrop * Mwm * (1-Beta*Inlet.T); |
---|
86 | |
---|
87 | "Calculate Outlet Enthalpy" |
---|
88 | (Outlet.h - Inlet.h) * rho = -Pdrop * Mwm; |
---|
89 | |
---|
90 | "Molar Balance" |
---|
91 | Outlet.F = Inlet.F; |
---|
92 | |
---|
93 | "Calculate Outlet Composition" |
---|
94 | Outlet.z = Inlet.z; |
---|
95 | |
---|
96 | "Calculate Head" |
---|
97 | Head = Outlet.h - Inlet.h; |
---|
98 | end |
---|
99 | |
---|
100 | Model HidraulicTurbineGenerator as HidraulicTurbine |
---|
101 | ATTRIBUTES |
---|
102 | Pallete = true; |
---|
103 | Icon = "icon/HidraulicTurbine"; |
---|
104 | Brief = "Model of a Hidraulic Turbine."; |
---|
105 | Info = |
---|
106 | "== Assumptions == |
---|
107 | * Steady State; |
---|
108 | * Only Liquid; |
---|
109 | * Adiabatic; |
---|
110 | * Isentropic. |
---|
111 | |
---|
112 | == Specify == |
---|
113 | * the inlet stream; |
---|
114 | * the Pressure Increase (Pdiff) OR the outlet pressure (Outlet.P); |
---|
115 | * the Turbine efficiency (Eff); |
---|
116 | * the Brake efficiency (Meff); |
---|
117 | * the Volumetric expansivity (Beta). |
---|
118 | "; |
---|
119 | |
---|
120 | VARIABLES |
---|
121 | EPower as power (Brief = "Eletrical Potency"); |
---|
122 | |
---|
123 | EQUATIONS |
---|
124 | "Calculate Eletric Power" |
---|
125 | EPower = BPower * Meff; |
---|
126 | end |
---|
127 | |
---|
128 | Model expander |
---|
129 | |
---|
130 | ATTRIBUTES |
---|
131 | Pallete = true; |
---|
132 | Icon = "icon/HidraulicTurbine"; |
---|
133 | Brief = "Model of an expansor."; |
---|
134 | Info = |
---|
135 | "To be documented"; |
---|
136 | |
---|
137 | PARAMETERS |
---|
138 | |
---|
139 | outer PP as Plugin (Brief = "External Physical Properties", Type="PP"); |
---|
140 | outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); |
---|
141 | Rgas as positive (Brief = "Constant of Gases", Unit= 'kJ/kmol/K', Default = 8.31451,Hidden=true); |
---|
142 | Mw(NComp) as molweight (Brief = "Molar Weight"); |
---|
143 | |
---|
144 | VARIABLES |
---|
145 | |
---|
146 | IseCoeff as positive (Brief = "Isentropic Coefficient", Lower=0.2); |
---|
147 | Pratio as positive (Brief = "Pressure Ratio", Symbol ="P_{ratio}"); |
---|
148 | Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit = 'kPa', Symbol ="\Delta P"); |
---|
149 | Pdecrease as press_delta (Brief = "Pressure Decrease", DisplayUnit = 'kPa', Symbol ="P_{decr}"); |
---|
150 | |
---|
151 | Head as energy_mass (Brief = "Head",Hidden=true); |
---|
152 | HeadIsentropic as energy_mass (Brief = "Isentropic Head"); |
---|
153 | Tisentropic as temperature (Brief = "Isentropic Temperature"); |
---|
154 | |
---|
155 | IsentropicEff as efficiency (Brief = "Isentropic efficiency"); |
---|
156 | MechanicalEff as efficiency (Brief = "Mechanical efficiency"); |
---|
157 | |
---|
158 | FluidPower as power (Brief = "Fluid Power"); |
---|
159 | BrakePower as power (Brief = "Brake Power"); |
---|
160 | PowerLoss as power (Brief = "Power Losses",Lower=0); |
---|
161 | Mwm as molweight (Brief = "Mixture Molar Weight"); |
---|
162 | rho as dens_mass (Brief = "Mass Density"); |
---|
163 | Zfac_in as fraction (Brief = "Compressibility factor at inlet"); |
---|
164 | Zfac_out as fraction (Brief = "Compressibility factor at outlet"); |
---|
165 | |
---|
166 | in Inlet as stream (Brief = "Inlet stream", PosX=0.05, PosY=0.0, Symbol="_{in}"); |
---|
167 | out Outlet as streamPH (Brief = "Outlet stream", PosX=0.65, PosY=1, Symbol="_{out}"); |
---|
168 | |
---|
169 | out WorkOut as power (Brief = "Work Outlet", PosX=1, PosY=0.46); |
---|
170 | |
---|
171 | SET |
---|
172 | |
---|
173 | Mw = PP.MolecularWeight(); |
---|
174 | |
---|
175 | Rgas = 8.31451*'kJ/kmol/K'; |
---|
176 | |
---|
177 | EQUATIONS |
---|
178 | |
---|
179 | "Overall Molar Balance" |
---|
180 | Outlet.F = Inlet.F; |
---|
181 | |
---|
182 | "Component Molar Balance" |
---|
183 | Outlet.z = Inlet.z; |
---|
184 | |
---|
185 | "Average Molecular Weight" |
---|
186 | Mwm = sum(Mw*Inlet.z); |
---|
187 | |
---|
188 | "Pressure Ratio" |
---|
189 | Outlet.P = Inlet.P * Pratio; |
---|
190 | |
---|
191 | "Pressure Drop" |
---|
192 | Outlet.P = Inlet.P - Pdrop; |
---|
193 | |
---|
194 | "Pressure Decrease" |
---|
195 | Outlet.P = Inlet.P - Pdecrease; |
---|
196 | |
---|
197 | "Mass Density" |
---|
198 | rho = PP.VapourDensity(Inlet.T, Inlet.P, Inlet.z); |
---|
199 | |
---|
200 | "Compressibility factor at Inlet Conditions" |
---|
201 | Zfac_in = PP.VapourCompressibilityFactor(Inlet.T,Inlet.P,Inlet.z); |
---|
202 | |
---|
203 | "Compressibility factor at Outlet Conditions" |
---|
204 | Zfac_out = PP.VapourCompressibilityFactor(Outlet.T,Outlet.P,Outlet.z); |
---|
205 | |
---|
206 | "Isentropic Head" |
---|
207 | HeadIsentropic*Mwm = (PP.VapourEnthalpy(Tisentropic,Outlet.P,Outlet.z)-Inlet.h); |
---|
208 | |
---|
209 | "Actual Head" |
---|
210 | Head*Mwm = (Outlet.h-Inlet.h); |
---|
211 | |
---|
212 | "Isentropic Coefficient" |
---|
213 | HeadIsentropic = (0.5*Zfac_in+0.5*Zfac_out)*(1/Mwm)*(IseCoeff/(IseCoeff-1.001))*Rgas*Inlet.T*((Outlet.P/Inlet.P)^((IseCoeff-1.001)/IseCoeff) - 1); |
---|
214 | |
---|
215 | "Isentropic Outlet Temperature" |
---|
216 | PP.VapourEntropy(Tisentropic, Outlet.P, Outlet.z) = PP.VapourEntropy(Inlet.T, Inlet.P, Inlet.z); |
---|
217 | |
---|
218 | |
---|
219 | if IsentropicEff equal 1 |
---|
220 | |
---|
221 | then |
---|
222 | "Discharge Temperature" |
---|
223 | Outlet.T = Tisentropic; |
---|
224 | |
---|
225 | else |
---|
226 | |
---|
227 | "Discharge Temperature" |
---|
228 | (PP.VapourEnthalpy(Outlet.T,Outlet.P,Outlet.z)-Inlet.h)= (PP.VapourEnthalpy(Tisentropic,Outlet.P,Outlet.z)-Inlet.h)*IsentropicEff; |
---|
229 | |
---|
230 | end |
---|
231 | |
---|
232 | "Fluid Power" |
---|
233 | FluidPower = IsentropicEff*HeadIsentropic*sum(Mw*Inlet.z)*Inlet.F+PowerLoss; |
---|
234 | |
---|
235 | "Brake Power" |
---|
236 | BrakePower = WorkOut; |
---|
237 | |
---|
238 | "Brake Power" |
---|
239 | BrakePower = FluidPower*MechanicalEff; |
---|
240 | |
---|
241 | "Power Loss" |
---|
242 | PowerLoss = BrakePower - FluidPower; |
---|
243 | |
---|
244 | end |
---|