[574] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | * |
---|
| 15 | *-------------------------------------------------------------------- |
---|
| 16 | * Author: Gerson Balbueno Bicca |
---|
| 17 | * $Id: Heatex.mso 733 2009-02-26 22:25:45Z bicca $ |
---|
| 18 | *--------------------------------------------------------------------*# |
---|
| 19 | |
---|
| 20 | using "heat_exchangers/HEX_Engine"; |
---|
| 21 | |
---|
| 22 | Model Heatex_Basic |
---|
| 23 | |
---|
| 24 | ATTRIBUTES |
---|
| 25 | Pallete = false; |
---|
| 26 | Brief = "Basic Model for Simplified Heat Exchangers"; |
---|
| 27 | Info = |
---|
| 28 | "Model of a simplified heat exchanger. |
---|
| 29 | This model perform only material and heat balance. |
---|
| 30 | |
---|
| 31 | == Assumptions == |
---|
| 32 | * Steady-State operation; |
---|
| 33 | * No heat loss to the surroundings. |
---|
| 34 | |
---|
| 35 | == Specify == |
---|
| 36 | * The Inlet streams: Hot and Cold; |
---|
| 37 | "; |
---|
| 38 | |
---|
| 39 | PARAMETERS |
---|
| 40 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
| 41 | outer NComp as Integer (Brief="Number of Components"); |
---|
| 42 | |
---|
| 43 | M(NComp) as molweight (Brief="Component Mol Weight",Hidden=true); |
---|
| 44 | |
---|
| 45 | VARIABLES |
---|
| 46 | |
---|
[733] | 47 | in InletHot as stream (Brief="Inlet Hot Stream", PosX=0, PosY=0.508, Symbol="^{inHot}"); |
---|
| 48 | out OutletHot as streamPH (Brief="Outlet Hot Stream", PosX=1, PosY=0.508, Symbol="^{outHot}"); |
---|
| 49 | in InletCold as stream (Brief="Inlet Cold Stream", PosX=0.50, PosY=1, Symbol="^{inCold}"); |
---|
| 50 | out OutletCold as streamPH (Brief="Outlet Cold Stream", PosX=0.50, PosY=0, Symbol="^{outCold}"); |
---|
[574] | 51 | |
---|
| 52 | A as area (Brief="Exchange Surface Area"); |
---|
| 53 | Q as power (Brief="Duty", Default=7000, Lower=1e-6, Upper=1e10); |
---|
| 54 | U as heat_trans_coeff (Brief="Overall Heat Transfer Coefficient",Default=1,Lower=1e-6,Upper=1e10); |
---|
| 55 | |
---|
| 56 | PdropHotSide as press_delta (Brief="Pressure Drop Hot Side",Default=0.01, Lower=0,DisplayUnit='kPa' , Symbol ="\Delta P_{hot}"); |
---|
| 57 | PdropColdSide as press_delta (Brief="Pressure Drop Cold Side",Default=0.01, Lower=0,DisplayUnit='kPa' , Symbol ="\Delta P_{cold}"); |
---|
| 58 | |
---|
| 59 | SET |
---|
| 60 | |
---|
| 61 | #"Component Molecular Weight" |
---|
| 62 | M = PP.MolecularWeight(); |
---|
| 63 | |
---|
| 64 | EQUATIONS |
---|
| 65 | |
---|
| 66 | "Energy Balance Hot Stream" |
---|
| 67 | Q = InletHot.F*(InletHot.h-OutletHot.h); |
---|
| 68 | |
---|
| 69 | "Energy Balance Cold Stream" |
---|
| 70 | Q =-InletCold.F*(InletCold.h-OutletCold.h); |
---|
| 71 | |
---|
| 72 | "Molar Balance Hot Stream" |
---|
| 73 | InletHot.F = OutletHot.F; |
---|
| 74 | |
---|
| 75 | "Molar Balance Cold Stream" |
---|
| 76 | InletCold.F = OutletCold.F; |
---|
| 77 | |
---|
| 78 | "Hot Stream Molar Fraction Constraint" |
---|
| 79 | OutletHot.z = InletHot.z; |
---|
| 80 | |
---|
| 81 | "Cold Stream Molar Fraction Constraint" |
---|
| 82 | OutletCold.z = InletCold.z; |
---|
| 83 | |
---|
| 84 | "Pressure Drop Hot Stream" |
---|
| 85 | OutletHot.P = InletHot.P - PdropHotSide; |
---|
| 86 | |
---|
| 87 | "Pressure Drop Cold Stream" |
---|
| 88 | OutletCold.P = InletCold.P - PdropColdSide; |
---|
| 89 | |
---|
| 90 | end |
---|
| 91 | |
---|
| 92 | Model Heatex_LMTD as Heatex_Basic |
---|
| 93 | |
---|
| 94 | ATTRIBUTES |
---|
| 95 | Pallete = true; |
---|
[733] | 96 | Icon = "icon/Heatex"; |
---|
[574] | 97 | Brief = "Simplified model for Heat Exchangers"; |
---|
| 98 | Info = |
---|
| 99 | "This model perform material and heat balance using the Log Mean Temperature Difference Approach. |
---|
| 100 | This shortcut calculation does not require exchanger configuration or geometry data. |
---|
| 101 | |
---|
| 102 | == Assumptions == |
---|
| 103 | * Steady-State operation; |
---|
| 104 | * No heat loss to the surroundings. |
---|
| 105 | |
---|
| 106 | == Specify == |
---|
| 107 | * The Inlet streams: Hot and Cold. |
---|
| 108 | |
---|
| 109 | == References == |
---|
| 110 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
| 111 | Construction, Longman, Harlow, 1988. |
---|
| 112 | |
---|
| 113 | [2] Taborek, J., Shell-and-tube heat exchangers, in Heat Exchanger Design Handbook, Vol. 3 |
---|
| 114 | Hemisphere Publishing Corp., New York, 1988. |
---|
| 115 | |
---|
| 116 | [3] Fakheri, A. , Alternative approach for determining log mean temperature difference correction factor |
---|
| 117 | and number of shells of shell and tube heat exchangers, Journal of Enhanced Heat Transfer, v. 10, p. 407- 420, 2003. |
---|
| 118 | "; |
---|
| 119 | |
---|
| 120 | PARAMETERS |
---|
| 121 | |
---|
| 122 | ExchangerType as Switcher (Brief="Type of Heat Exchanger",Valid=["Counter Flow","Cocurrent Flow", "Shell and Tube"],Default="Cocurrent Flow"); |
---|
| 123 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakheri"],Default="Bowmann"); |
---|
| 124 | |
---|
| 125 | VARIABLES |
---|
| 126 | |
---|
| 127 | Method as LMTD_Basic (Brief="LMTD Method of Calculation", Symbol =" "); |
---|
| 128 | R as positive (Brief="Capacity Ratio for LMTD Correction Fator",Lower=1e-6,Hidden=true); |
---|
| 129 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6,Hidden=true); |
---|
| 130 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakheri Equation",Lower=1e-6,Hidden=true); |
---|
| 131 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakheri Equation",Lower=1e-6, Symbol ="\phi",Hidden=true); |
---|
| 132 | |
---|
| 133 | EQUATIONS |
---|
| 134 | |
---|
| 135 | "Duty" |
---|
| 136 | Q = U*A*Method.LMTD*Method.Fc; |
---|
| 137 | |
---|
| 138 | switch ExchangerType |
---|
| 139 | |
---|
| 140 | case "Cocurrent Flow": |
---|
| 141 | |
---|
| 142 | "Temperature Difference at Inlet" |
---|
| 143 | Method.DT0 = InletHot.T - InletCold.T; |
---|
| 144 | |
---|
| 145 | "Temperature Difference at Outlet" |
---|
| 146 | Method.DTL = OutletHot.T - OutletCold.T; |
---|
| 147 | |
---|
| 148 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
| 149 | R=1; |
---|
| 150 | |
---|
| 151 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
| 152 | P=1; |
---|
| 153 | |
---|
| 154 | " Variable useless with this model" |
---|
| 155 | Phi = 1; |
---|
| 156 | |
---|
| 157 | " Variable useless with this model" |
---|
| 158 | Rho = 1; |
---|
| 159 | |
---|
| 160 | "LMTD Correction Factor in Cocurrent Flow" |
---|
| 161 | Method.Fc = 1; |
---|
| 162 | |
---|
| 163 | case "Counter Flow": |
---|
| 164 | |
---|
| 165 | "Temperature Difference at Inlet" |
---|
| 166 | Method.DT0 = InletHot.T - OutletCold.T; |
---|
| 167 | |
---|
| 168 | "Temperature Difference at Outlet" |
---|
| 169 | Method.DTL = OutletHot.T - InletCold.T; |
---|
| 170 | |
---|
| 171 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
| 172 | R=1; |
---|
| 173 | |
---|
| 174 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
| 175 | P=1; |
---|
| 176 | |
---|
| 177 | " Variable useless with this model" |
---|
| 178 | Phi = 1; |
---|
| 179 | |
---|
| 180 | " Variable useless with this model" |
---|
| 181 | Rho = 1; |
---|
| 182 | |
---|
| 183 | "LMTD Correction Factor in Counter Flow" |
---|
| 184 | Method.Fc = 1; |
---|
| 185 | |
---|
| 186 | case "Shell and Tube": |
---|
| 187 | |
---|
| 188 | "Temperature Difference at Inlet" |
---|
| 189 | Method.DT0 = InletHot.T - OutletCold.T; |
---|
| 190 | |
---|
| 191 | "Temperature Difference at Outlet" |
---|
| 192 | Method.DTL = OutletHot.T - InletCold.T; |
---|
| 193 | |
---|
| 194 | switch LMTDcorrection |
---|
| 195 | |
---|
| 196 | case "Bowmann": |
---|
| 197 | |
---|
| 198 | " Variable not in use with Bowmann equation" |
---|
| 199 | Phi = 1; |
---|
| 200 | |
---|
| 201 | " Variable not in use with Bowmann equation" |
---|
| 202 | Rho = 1; |
---|
| 203 | |
---|
| 204 | "R: Capacity Ratio for LMTD Correction Fator when Shell and Tube" |
---|
| 205 | R*(OutletCold.T - InletCold.T ) = (InletHot.T-OutletHot.T); |
---|
| 206 | |
---|
| 207 | "P: Non - Dimensional Variable for LMTD Correction Fator when Shell and Tube" |
---|
| 208 | P*(InletHot.T- InletCold.T)= (OutletCold.T-InletCold.T); |
---|
| 209 | |
---|
| 210 | if R equal 1 |
---|
| 211 | |
---|
| 212 | then |
---|
| 213 | |
---|
| 214 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 215 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
| 216 | |
---|
| 217 | else |
---|
| 218 | |
---|
| 219 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 220 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
| 221 | |
---|
| 222 | end |
---|
| 223 | |
---|
| 224 | case "Fakheri": |
---|
| 225 | |
---|
| 226 | "R: Capacity Ratio for LMTD Correction Fator when Shell and Tube" |
---|
| 227 | R*(OutletCold.T - InletCold.T ) = (InletHot.T-OutletHot.T); |
---|
| 228 | |
---|
| 229 | "P: Non - Dimensional Variable for LMTD Correction Fator when Shell and Tube" |
---|
| 230 | P*(InletHot.T- InletCold.T)= (OutletCold.T-InletCold.T); |
---|
| 231 | |
---|
| 232 | "Non Dimensional Variable for LMTD Correction Fator in Fakheri Equation " |
---|
| 233 | Phi = (sqrt(((InletHot.T- OutletHot.T)*(InletHot.T- OutletHot.T))+((OutletCold.T - InletCold.T)*(OutletCold.T - InletCold.T))))/(2*((InletHot.T+ OutletHot.T)-(InletCold.T+ OutletCold.T))); |
---|
| 234 | |
---|
| 235 | "Non Dimensional Variable for LMTD Correction Fator in Fakheri Equation" |
---|
| 236 | Rho*(1-P*R) = (1-P); |
---|
| 237 | |
---|
| 238 | if Rho equal 1 |
---|
| 239 | |
---|
| 240 | then |
---|
| 241 | |
---|
| 242 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 243 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
| 244 | |
---|
| 245 | else |
---|
| 246 | |
---|
| 247 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 248 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
| 249 | |
---|
| 250 | end |
---|
| 251 | |
---|
| 252 | end |
---|
| 253 | |
---|
| 254 | end |
---|
| 255 | |
---|
| 256 | end |
---|
| 257 | |
---|
| 258 | Model Heatex_NTU as Heatex_Basic |
---|
| 259 | |
---|
| 260 | ATTRIBUTES |
---|
| 261 | Pallete = true; |
---|
[733] | 262 | Icon = "icon/Heatex"; |
---|
[574] | 263 | Brief = "Simplified model for Heat Exchangers"; |
---|
| 264 | Info = |
---|
| 265 | "This model perform material and heat balance using the NTU-Effectiveness Approach. |
---|
| 266 | This shortcut calculation does not require exchanger configuration or geometry data. |
---|
| 267 | |
---|
| 268 | == Assumptions == |
---|
| 269 | * Steady-State operation; |
---|
| 270 | * No heat loss to the surroundings. |
---|
| 271 | |
---|
| 272 | == Specify == |
---|
| 273 | * The Inlet streams: Hot and Cold. |
---|
| 274 | |
---|
| 275 | == References == |
---|
| 276 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
| 277 | Construction, Longman, Harlow, 1988. |
---|
| 278 | |
---|
| 279 | "; |
---|
| 280 | |
---|
| 281 | PARAMETERS |
---|
| 282 | |
---|
| 283 | ExchangerType as Switcher (Brief="Type of Heat Exchanger",Valid=["Counter Flow","Cocurrent Flow", "Shell and Tube"],Default="Cocurrent Flow"); |
---|
| 284 | |
---|
| 285 | VARIABLES |
---|
| 286 | |
---|
| 287 | Method as NTU_Basic (Brief="NTU Method of Calculation", Symbol =" "); |
---|
| 288 | |
---|
| 289 | xh(NComp) as fraction (Brief = "Liquid Molar Fraction in Hot Side",Hidden=true); |
---|
| 290 | yh(NComp) as fraction (Brief = "Vapour Molar Fraction in Hot Side",Hidden=true); |
---|
| 291 | vh as fraction (Brief = "Vapour Fraction in Hot Side",Hidden=true); |
---|
| 292 | |
---|
| 293 | xc(NComp) as fraction (Brief = "Liquid Molar Fraction in Cold Side",Hidden=true); |
---|
| 294 | yc(NComp) as fraction (Brief = "Vapour Molar Fraction in Cold Side",Hidden=true); |
---|
| 295 | vc as fraction (Brief = "Vapour Fraction in Cold Side",Hidden=true); |
---|
| 296 | |
---|
| 297 | EQUATIONS |
---|
| 298 | |
---|
| 299 | "Flash Calculation in Hot Side" |
---|
| 300 | [vh, xh, yh] = PP.Flash(InletHot.T, InletHot.P, InletHot.z); |
---|
| 301 | |
---|
| 302 | "Flash Calculation in Cold Side" |
---|
| 303 | [vc, xc, yc] = PP.Flash(InletCold.T, InletCold.P, InletCold.z); |
---|
| 304 | |
---|
| 305 | "Number of Units Transference" |
---|
| 306 | Method.NTU*Method.Cmin = U*A; |
---|
| 307 | |
---|
| 308 | "Minimum Heat Capacity" |
---|
| 309 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
| 310 | |
---|
| 311 | "Maximum Heat Capacity" |
---|
| 312 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
| 313 | |
---|
| 314 | "Thermal Capacity Ratio" |
---|
| 315 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
| 316 | |
---|
| 317 | "Duty" |
---|
| 318 | Q = Method.Eft*Method.Cmin*(InletHot.T-InletCold.T); |
---|
| 319 | |
---|
| 320 | "Hot Stream Average Heat Capacity" |
---|
| 321 | Method.Ch = InletHot.F*((1-InletHot.v)*PP.LiquidCp(0.5*InletHot.T+0.5*OutletHot.T,0.5*InletHot.P+0.5*OutletHot.P,xh)+ |
---|
| 322 | InletHot.v*PP.VapourCp(0.5*InletHot.T+0.5*OutletHot.T,0.5*InletHot.P+0.5*OutletHot.P,yh)); |
---|
| 323 | |
---|
| 324 | "Cold Stream Average Heat Capacity" |
---|
| 325 | Method.Cc = InletCold.F*((1-InletCold.v)*PP.LiquidCp(0.5*InletCold.T+0.5*OutletCold.T,0.5*InletCold.P+0.5*OutletCold.P,xc)+ |
---|
| 326 | InletCold.v*PP.VapourCp(0.5*InletCold.T+0.5*OutletCold.T,0.5*InletCold.P+0.5*OutletCold.P,yc)); |
---|
| 327 | |
---|
| 328 | "Effectiveness Correction" |
---|
| 329 | Method.Eft1 = 1; |
---|
| 330 | |
---|
| 331 | if Method.Cr equal 0 |
---|
| 332 | |
---|
| 333 | then |
---|
| 334 | |
---|
| 335 | "Effectiveness" |
---|
| 336 | Method.Eft = 1-exp(-Method.NTU); |
---|
| 337 | |
---|
| 338 | else |
---|
| 339 | |
---|
| 340 | switch ExchangerType |
---|
| 341 | |
---|
| 342 | case "Cocurrent Flow": |
---|
| 343 | |
---|
| 344 | "Effectiveness in Cocurrent Flow" |
---|
| 345 | Method.Eft = (1-exp(-Method.NTU*(1+Method.Cr)))/(1+Method.Cr); |
---|
| 346 | |
---|
| 347 | case "Counter Flow": |
---|
| 348 | |
---|
| 349 | if Method.Cr equal 1 |
---|
| 350 | |
---|
| 351 | then |
---|
| 352 | "Effectiveness in Counter Flow" |
---|
| 353 | Method.Eft = Method.NTU/(1+Method.NTU); |
---|
| 354 | |
---|
| 355 | else |
---|
| 356 | "Effectiveness in Counter Flow" |
---|
| 357 | Method.Eft = (1-exp(-Method.NTU*(1-Method.Cr)))/(1-Method.Cr*exp(-Method.NTU*(1-Method.Cr))); |
---|
| 358 | |
---|
| 359 | end |
---|
| 360 | |
---|
| 361 | case "Shell and Tube": |
---|
| 362 | |
---|
| 363 | "TEMA E Shell Effectiveness" |
---|
| 364 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^(-1); |
---|
| 365 | |
---|
| 366 | end |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | end |
---|
| 370 | |
---|
| 371 | end |
---|