1 | #*------------------------------------------------------------------- |
---|
2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
3 | * |
---|
4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
6 | * http://www.enq.ufrgs.br/alsoc. |
---|
7 | * |
---|
8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
10 | * All rights reserved. |
---|
11 | * |
---|
12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
14 | *-------------------------------------------------------------------- |
---|
15 | * Author: Gerson Balbueno Bicca |
---|
16 | * $Id: HeatExchangerDetailed.mso 197 2007-03-08 14:31:57Z bicca $ |
---|
17 | *------------------------------------------------------------------*# |
---|
18 | using "heat_exchangers/HEX_Engine"; |
---|
19 | |
---|
20 | Model ShellandTubesBasic |
---|
21 | |
---|
22 | ATTRIBUTES |
---|
23 | Pallete = false; |
---|
24 | Brief = "Basic Model for Detailed Shell and Tube Heat Exchanger."; |
---|
25 | Info = |
---|
26 | "to be documented. |
---|
27 | |
---|
28 | == Assumptions == |
---|
29 | * to be documented |
---|
30 | |
---|
31 | == Specify == |
---|
32 | * to be documented |
---|
33 | |
---|
34 | == Setting Parameters == |
---|
35 | * to be documented |
---|
36 | |
---|
37 | == References == |
---|
38 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
39 | Construction, Longman, Harlow, 1988. |
---|
40 | |
---|
41 | [2] Taborek, J., Shell-and-tube heat exchangers, in Heat Exchanger Design Handbook, Vol. 3 |
---|
42 | Hemisphere Publishing Corp., New York, 1988. |
---|
43 | |
---|
44 | [3] Bell, K. J., Mueller, A. C., Wolverine Engineering Data Book II. Wolverine Tube, Inc., <www.wlv.com>, 2001. |
---|
45 | |
---|
46 | [4] Fakheri, A. , Alternative approach for determining log mean temperature difference correction factor |
---|
47 | and number of shells of shell and tube heat exchangers, Journal of Enhanced Heat Transfer, v. 10, p. 407- 420, 2003. |
---|
48 | |
---|
49 | [5] Gnielinski, V., Forced convection in ducts, in Heat Exchanger Design Handbook, Vol. 2 |
---|
50 | Hemisphere Publishing Corp., New York, 1988."; |
---|
51 | |
---|
52 | PARAMETERS |
---|
53 | |
---|
54 | HotSide as Switcher (Brief="Hot Side in the Exchanger",Valid=["shell","tubes"],Default="shell"); |
---|
55 | ShellType as Switcher (Brief="TEMA Designation",Valid=["Eshell","Fshell"],Default="Eshell"); |
---|
56 | Pattern as Switcher (Brief="Tube Layout Characteristic Angle",Valid=["Triangle","Rotated Square","Square"],Default="Triangle"); |
---|
57 | |
---|
58 | VARIABLES |
---|
59 | |
---|
60 | Tubes as Tube_Side_Main (Brief="Tube Side Section" , Symbol="^{tube}"); |
---|
61 | Shell as Shell_Side_Main (Brief="Shell Side Section" , Symbol="^{shell}"); |
---|
62 | Baffles as Baffles_Main (Brief="Baffle Section", Symbol=" "); |
---|
63 | Clearances as Clearances_Main (Brief="Diametral Clearances", Symbol=" "); |
---|
64 | |
---|
65 | in InletTube as stream (Brief="Inlet Tube Stream", PosX=0.08, PosY=0, Symbol="_{in }^{tube}"); |
---|
66 | out OutletTube as streamPH (Brief="Outlet Tube Stream", PosX=0.08, PosY=1, Symbol="_{out }^{tube}"); |
---|
67 | in InletShell as stream (Brief="Inlet Shell Stream", PosX=0.2237, PosY=0, Symbol="_{in }^{shell}"); |
---|
68 | out OutletShell as streamPH (Brief="Outlet Shell Stream", PosX=0.8237, PosY=1, Symbol="_{out }^{shell}"); |
---|
69 | Details as Details_Main (Brief="Details in Heat Exchanger", Symbol = " "); |
---|
70 | |
---|
71 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
72 | # Auxiliar Variables - Must be hidden |
---|
73 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
74 | Nc as Real (Brief = "Number of Tube rows Crossed in one Crossflow Section", Hidden = true, Lower=1); |
---|
75 | Ncw as Real (Brief = "Number of Effective Crossflow rows in Each Window", Hidden = true, Lower=1); |
---|
76 | a as Real (Brief = "Variable for calculating Ji heat transfer correction Factor", Hidden = true, Lower=1e-3); |
---|
77 | b as Real (Brief = "Variable for calculating shell side pressure drop friction Factor", Hidden = true, Lower=1e-3); |
---|
78 | Rb as Real (Brief = "ByPass Correction Factor for Pressure Drop", Hidden = true, Lower=1e-3); |
---|
79 | Rss as Real (Brief = "Correction Factor for Pressure Drop", Hidden = true, Lower=1e-3); |
---|
80 | Rspd as Real (Brief = "Pressure Drop Correction Factor for Unequal Baffle Spacing", Hidden = true, Lower=1e-3); |
---|
81 | mw as Real (Brief = "Mass Velocity in Window Zone", Hidden = true, Unit='kg/m^2/s'); |
---|
82 | Ji as constant (Brief="Shell Side Ji Factor", Symbol ="J_i", Hidden = true, Default=0.05); |
---|
83 | Jr as positive (Brief="Shell Side Jr Factor", Symbol ="J_r", Hidden = true, Lower=10e-6); |
---|
84 | Jl as positive (Brief="Shell Side Jl Factor", Symbol ="J_l", Hidden = true, Lower=10e-6); |
---|
85 | Jb as positive (Brief="Shell Side Jb Factor", Symbol ="J_b", Hidden = true, Lower=10e-6); |
---|
86 | Jc as positive (Brief="Shell Side Jc Factor", Symbol ="J_c", Hidden = true, Lower=10e-6); |
---|
87 | Js as positive (Brief="Shell Side Js Factor", Symbol ="J_s", Hidden = true, Lower=10e-6); |
---|
88 | Jtotal as positive (Brief="Shell Side Jtotal Factor", Symbol ="J_{total}", Hidden = true, Lower=10e-6); |
---|
89 | Sm as area (Brief="Shell Side Cross Flow Area", Symbol ="S_m", Hidden = true, Default=0.05,Lower=10e-6); |
---|
90 | |
---|
91 | PARAMETERS |
---|
92 | outer PP as Plugin (Brief="External Physical Properties",Type = "PP"); |
---|
93 | outer NComp as Integer (Brief="Number of Components"); |
---|
94 | |
---|
95 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
96 | |
---|
97 | TubeFlowRegime as Switcher (Brief="Tube Side Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
98 | ShellFlowRegime as Switcher (Brief="Shell Side Flow Regime ",Valid=["deep laminar","laminar","turbulent"],Default="deep laminar"); |
---|
99 | ShellRange as Switcher (Brief="Shell Side Flow Regime Range for Correction Factor",Valid=["range1","range2","range3", "range4","range5"],Default="range1"); |
---|
100 | Side as Switcher (Brief="Flag for Fluid Alocation ",Valid=["shell","tubes"],Default="shell"); |
---|
101 | LaminarCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Laminar Flow",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
102 | TransitionCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Transition Flow",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); |
---|
103 | TurbulentCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Turbulent Flow",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
104 | |
---|
105 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
106 | # Auxiliar Parameters - Must be hidden |
---|
107 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
108 | Pi as constant (Brief="Pi Number", Hidden = true, Default=3.14159265, Symbol = "\pi"); |
---|
109 | Aonozzle_Shell as area (Brief="Shell Outlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_out }^{shell}"); |
---|
110 | Ainozzle_Shell as area (Brief="Shell Inlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_in }^{shell}"); |
---|
111 | Aeonozzle_Shell as area (Brief="Shell Outlet Escape Area Under Nozzle", Hidden = true, Lower=1E-6 , Symbol ="Aescape_{nozzle\_out }^{shell}"); |
---|
112 | Aeinozzle_Shell as area (Brief="Shell Inlet Escape Area Under Nozzle",Hidden = true, Lower=1E-6 , Symbol ="Aescape_{nozzle\_in }^{shell}"); |
---|
113 | Aonozzle_Tube as area (Brief="Tube Outlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_out }^{tube}"); |
---|
114 | Ainozzle_Tube as area (Brief="Tube Inlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_in }^{tube}"); |
---|
115 | Kinlet_Tube as positive (Brief="Tube Inlet Nozzle Pressure Loss Coeff", Hidden = true, Default=1.1, Symbol ="K_{in }^{tube}"); |
---|
116 | Koutlet_Tube as positive (Brief="Tube Outlet Nozzle Pressure Loss Coeff",Hidden = true, Default=0.7, Symbol ="K_{out }^{tube}"); |
---|
117 | Ods as Real (Brief="Baffle cut angle in degrees", Symbol = "\theta _{ds}", Hidden = true); |
---|
118 | Octl as Real (Brief="Baffle cut angle relative to the centerline in degrees", Symbol = "\theta _{ctl}", Hidden = true); |
---|
119 | Ftw as Real (Brief="Fraction of number of tubes in baffle window", Symbol = "F _{tw}", Hidden = true); |
---|
120 | Scd as area (Brief="Shell to baffle leakage area", Symbol = "S _{cd}", Hidden = true); |
---|
121 | Std as area (Brief="Tube to baffle hole leakage area", Symbol = "S _{td}", Hidden = true); |
---|
122 | Rs as Real (Brief="Ratio of the shell to baffle leakage area", Symbol = "R_s", Hidden = true); |
---|
123 | Dw as length (Brief="Hydraulic diameter of the baffle window", Symbol = "D _w", Hidden = true); |
---|
124 | |
---|
125 | SET |
---|
126 | |
---|
127 | #"Molecular weight" |
---|
128 | M = PP.MolecularWeight(); |
---|
129 | |
---|
130 | #"Pi Number" |
---|
131 | Pi = 3.14159265; |
---|
132 | |
---|
133 | #"Baffle cut angle in degrees" |
---|
134 | Ods = (360/Pi)*acos(1-0.02*Baffles.BaffleCut); |
---|
135 | |
---|
136 | #"Baffle cut angle relative to the centerline" |
---|
137 | Octl = (360/Pi)*acos((Shell.ShellID/(Shell.ShellID - Clearances.BundleToShell - Tubes.TubeOD))*(1-0.02*Baffles.BaffleCut)); |
---|
138 | |
---|
139 | #"Fraction of number of tubes in baffle window" |
---|
140 | Ftw = (Octl/360)-sin(Octl*Pi/180)/(2*Pi); |
---|
141 | |
---|
142 | #"Shell to baffle leakage area" |
---|
143 | Scd = Pi*Shell.ShellID*Clearances.BaffleToShell *((360-Ods)/720); |
---|
144 | |
---|
145 | #"Tube to baffle hole leakage area" |
---|
146 | Std = Pi*0.25*((Clearances.TubeToBaffle + Tubes.TubeOD)^2-Tubes.TubeOD*Tubes.TubeOD)*Tubes.NumberOfTubes*(1-Ftw); |
---|
147 | |
---|
148 | #"comments" |
---|
149 | Rs = Scd/(Scd+Std); |
---|
150 | |
---|
151 | #"comments" |
---|
152 | Dw = (4*abs((Pi*Shell.ShellID*Shell.ShellID*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Tubes.NumberOfTubes*Pi*Tubes.TubeOD*Tubes.TubeOD*Ftw/4)))/(Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Ftw+ Pi*Shell.ShellID*Ods/360); |
---|
153 | |
---|
154 | #"Tube Side Inlet Nozzle Area" |
---|
155 | Ainozzle_Tube = 0.25*Pi*Tubes.InletNozzleID^2; |
---|
156 | |
---|
157 | #"Tube Side Outlet Nozzle Area" |
---|
158 | Aonozzle_Tube = 0.25*Pi*Tubes.OutletNozzleID^2; |
---|
159 | |
---|
160 | #"Tube Inlet Nozzle Pressure Loss Coeff" |
---|
161 | Kinlet_Tube = 1.1; |
---|
162 | |
---|
163 | #"Tube Outlet Nozzle Pressure Loss Coeff" |
---|
164 | Koutlet_Tube = 0.7; |
---|
165 | |
---|
166 | #"Shell Outlet Nozzle Area" |
---|
167 | Aonozzle_Shell = 0.25*Pi*Shell.OutletNozzleID^2; |
---|
168 | |
---|
169 | #"Shell Inlet Nozzle Area" |
---|
170 | Ainozzle_Shell = 0.25*Pi*Shell.InletNozzleID^2; |
---|
171 | |
---|
172 | #"Shell Outlet Escape Area Under Nozzle" |
---|
173 | Aeonozzle_Shell = Pi*Shell.OutletNozzleID*Clearances.Honozzle_Shell + 0.6*Aonozzle_Shell*(1-(Tubes.TubeOD/Tubes.TubePitch)); |
---|
174 | |
---|
175 | #"Shell Inlet Escape Area Under Nozzle" |
---|
176 | Aeinozzle_Shell = Pi*Shell.InletNozzleID*Clearances.Hinozzle_Shell + 0.6*Ainozzle_Shell*(1-(Tubes.TubeOD/Tubes.TubePitch)); |
---|
177 | |
---|
178 | EQUATIONS |
---|
179 | |
---|
180 | "Shell Stream Average Temperature" |
---|
181 | Shell.Properties.Average.T = 0.5*InletShell.T + 0.5*OutletShell.T; |
---|
182 | |
---|
183 | "Tube Stream Average Temperature" |
---|
184 | Tubes.Properties.Average.T = 0.5*InletTube.T + 0.5*OutletTube.T; |
---|
185 | |
---|
186 | "Shell Stream Average Pressure" |
---|
187 | Shell.Properties.Average.P = 0.5*InletShell.P+0.5*OutletShell.P; |
---|
188 | |
---|
189 | "Tube Stream Average Pressure" |
---|
190 | Tubes.Properties.Average.P = 0.5*InletTube.P+0.5*OutletTube.P; |
---|
191 | |
---|
192 | "Shell Stream Average Molecular Weight" |
---|
193 | Shell.Properties.Average.Mw = sum(M*InletShell.z); |
---|
194 | |
---|
195 | "Tube Stream Average Molecular Weight" |
---|
196 | Tubes.Properties.Average.Mw = sum(M*OutletTube.z); |
---|
197 | |
---|
198 | if InletTube.v equal 0 |
---|
199 | |
---|
200 | then |
---|
201 | |
---|
202 | "Tube Stream Average Heat Capacity" |
---|
203 | Tubes.Properties.Average.Cp = PP.LiquidCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
204 | |
---|
205 | "Tube Stream Average Mass Density" |
---|
206 | Tubes.Properties.Average.rho = PP.LiquidDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
207 | |
---|
208 | "Tube Stream Inlet Mass Density" |
---|
209 | Tubes.Properties.Inlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
210 | |
---|
211 | "Tube Stream Outlet Mass Density" |
---|
212 | Tubes.Properties.Outlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
213 | |
---|
214 | "TubeStream Average Viscosity" |
---|
215 | Tubes.Properties.Average.Mu = PP.LiquidViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
216 | |
---|
217 | "Tube Stream Average Conductivity" |
---|
218 | Tubes.Properties.Average.K = PP.LiquidThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
219 | |
---|
220 | "Tube Stream Viscosity at Wall Temperature" |
---|
221 | Tubes.Properties.Wall.Mu = PP.LiquidViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
222 | |
---|
223 | else |
---|
224 | |
---|
225 | "Tube Stream Average Heat Capacity" |
---|
226 | Tubes.Properties.Average.Cp = PP.VapourCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
227 | |
---|
228 | "Tube Stream Average Mass Density" |
---|
229 | Tubes.Properties.Average.rho = PP.VapourDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
230 | |
---|
231 | "Tube Stream Inlet Mass Density" |
---|
232 | Tubes.Properties.Inlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
233 | |
---|
234 | "Tube Stream Outlet Mass Density" |
---|
235 | Tubes.Properties.Outlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
236 | |
---|
237 | "Tube Stream Average Viscosity " |
---|
238 | Tubes.Properties.Average.Mu = PP.VapourViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
239 | |
---|
240 | "Tube Stream Average Conductivity " |
---|
241 | Tubes.Properties.Average.K = PP.VapourThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
242 | |
---|
243 | "Tube Stream Viscosity at Wall Temperature" |
---|
244 | Tubes.Properties.Wall.Mu = PP.VapourViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
245 | |
---|
246 | end |
---|
247 | |
---|
248 | if InletShell.v equal 0 |
---|
249 | |
---|
250 | then |
---|
251 | |
---|
252 | "Shell Stream Average Heat Capacity" |
---|
253 | Shell.Properties.Average.Cp = PP.LiquidCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
254 | |
---|
255 | "Shell Stream Average Mass Density" |
---|
256 | Shell.Properties.Average.rho = PP.LiquidDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
257 | |
---|
258 | "ShellStream Inlet Mass Density" |
---|
259 | Shell.Properties.Inlet.rho = PP.LiquidDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
260 | |
---|
261 | "Shell Stream Outlet Mass Density" |
---|
262 | Shell.Properties.Outlet.rho = PP.LiquidDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
263 | |
---|
264 | "Shell Stream Average Viscosity" |
---|
265 | Shell.Properties.Average.Mu = PP.LiquidViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
266 | |
---|
267 | "Shell Stream Average Conductivity" |
---|
268 | Shell.Properties.Average.K = PP.LiquidThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
269 | |
---|
270 | "ShellStream Viscosity at Wall Temperature" |
---|
271 | Shell.Properties.Wall.Mu = PP.LiquidViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
272 | |
---|
273 | |
---|
274 | else |
---|
275 | |
---|
276 | "Shell Stream Average Heat Capacity" |
---|
277 | Shell.Properties.Average.Cp = PP.VapourCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
278 | |
---|
279 | "Shell Stream Average Mass Density" |
---|
280 | Shell.Properties.Average.rho = PP.VapourDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
281 | |
---|
282 | "Shell Stream Inlet Mass Density" |
---|
283 | Shell.Properties.Inlet.rho = PP.VapourDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
284 | |
---|
285 | "Shell Stream Outlet Mass Density" |
---|
286 | Shell.Properties.Outlet.rho = PP.VapourDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
287 | |
---|
288 | "Shell Stream Average Viscosity" |
---|
289 | Shell.Properties.Average.Mu = PP.VapourViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
290 | |
---|
291 | "Shell Stream Average Conductivity" |
---|
292 | Shell.Properties.Average.K = PP.VapourThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
293 | |
---|
294 | "Shell Stream Viscosity at Wall Temperature" |
---|
295 | Shell.Properties.Wall.Mu = PP.VapourViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
296 | |
---|
297 | end |
---|
298 | |
---|
299 | switch Side |
---|
300 | |
---|
301 | case "shell": |
---|
302 | |
---|
303 | "Energy Balance Hot Stream" |
---|
304 | Details.Q = InletShell.F*(InletShell.h-OutletShell.h); |
---|
305 | |
---|
306 | "Energy Balance Cold Stream" |
---|
307 | Details.Q =-InletTube.F*(InletTube.h-OutletTube.h); |
---|
308 | |
---|
309 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
310 | |
---|
311 | case "tubes": |
---|
312 | |
---|
313 | "Energy Balance Hot Stream" |
---|
314 | Details.Q = InletTube.F*(InletTube.h-OutletTube.h); |
---|
315 | |
---|
316 | "Energy Balance Cold Stream" |
---|
317 | Details.Q =-InletShell.F*(InletShell.h-OutletShell.h); |
---|
318 | |
---|
319 | when InletTube.T < InletShell.T switchto "shell"; |
---|
320 | |
---|
321 | end |
---|
322 | |
---|
323 | "Flow Mass Inlet Tube Stream" |
---|
324 | Tubes.Properties.Inlet.Fw = sum(M*InletTube.z)*InletTube.F; |
---|
325 | |
---|
326 | "Flow Mass Outlet Tube Stream" |
---|
327 | Tubes.Properties.Outlet.Fw = sum(M*OutletTube.z)*OutletTube.F; |
---|
328 | |
---|
329 | "Flow Mass Inlet Shell Stream" |
---|
330 | Shell.Properties.Inlet.Fw = sum(M*InletShell.z)*InletShell.F; |
---|
331 | |
---|
332 | "Flow Mass Outlet Shell Stream" |
---|
333 | Shell.Properties.Outlet.Fw = sum(M*OutletShell.z)*OutletShell.F; |
---|
334 | |
---|
335 | "Molar Balance Shell Stream" |
---|
336 | OutletShell.F = InletShell.F; |
---|
337 | |
---|
338 | "Molar Balance Tube Stream" |
---|
339 | OutletTube.F = InletTube.F; |
---|
340 | |
---|
341 | "Shell Stream Molar Fraction Constraint" |
---|
342 | OutletShell.z=InletShell.z; |
---|
343 | |
---|
344 | "Tube Stream Molar Fraction Constraint" |
---|
345 | OutletTube.z=InletTube.z; |
---|
346 | |
---|
347 | "Jc Factor" |
---|
348 | Jc = 0.55+0.72*(1-2*Ftw); |
---|
349 | |
---|
350 | "Jl Factor" |
---|
351 | Jl = 0.44*(1-Rs)+(1-0.44*(1-Rs))*exp(-2.2*(Scd + Std)/Sm); |
---|
352 | |
---|
353 | "Total J Factor" |
---|
354 | Jtotal = Jc*Jl*Jb*Jr*Js; |
---|
355 | |
---|
356 | "Mass Velocity in Window Zone" |
---|
357 | mw = Shell.Properties.Inlet.Fw/sqrt(abs(Sm*abs((Pi*Shell.ShellID*Shell.ShellID*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Tubes.NumberOfTubes*Pi*Tubes.TubeOD*Tubes.TubeOD*Ftw/4)))); |
---|
358 | |
---|
359 | switch TubeFlowRegime |
---|
360 | |
---|
361 | case "laminar": |
---|
362 | |
---|
363 | "Friction Factor for heat Transfer: Not Necessary in Laminar Correlation - Use any one equation that you want" |
---|
364 | Tubes.HeatTransfer.fi = 16/Tubes.HeatTransfer.Re; |
---|
365 | |
---|
366 | "Friction Factor for Pressure Drop in Laminar Flow" |
---|
367 | Tubes.PressureDrop.FricFactor = 16/Tubes.HeatTransfer.Re; |
---|
368 | |
---|
369 | switch LaminarCorrelation |
---|
370 | |
---|
371 | case "Hausen": |
---|
372 | |
---|
373 | "Nusselt Number in Laminar Flow - Hausen Equation" |
---|
374 | Tubes.HeatTransfer.Nu = 3.665 + ((0.19*((Tubes.TubeID/Tubes.TubeLength)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.8)/(1+0.117*((Tubes.TubeID/Tubes.TubeLength)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.467)); |
---|
375 | |
---|
376 | case "Schlunder": |
---|
377 | |
---|
378 | "Nusselt Number in Laminar Flow - Schlunder Equation" |
---|
379 | Tubes.HeatTransfer.Nu = (49.027896+4.173281*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR*(Tubes.TubeID/Tubes.TubeLength))^(1/3); |
---|
380 | |
---|
381 | end |
---|
382 | |
---|
383 | when Tubes.HeatTransfer.Re > 2300 switchto "transition"; |
---|
384 | |
---|
385 | case "transition": |
---|
386 | |
---|
387 | "Friction Factor for heat Transfer : for use in Gnielinski Equation" |
---|
388 | Tubes.HeatTransfer.fi = 1/(0.79*ln(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
389 | |
---|
390 | "Friction Factor for Pressure Drop in Transition Flow" |
---|
391 | Tubes.PressureDrop.FricFactor = 0.0122; |
---|
392 | |
---|
393 | switch TransitionCorrelation |
---|
394 | |
---|
395 | case "Gnielinski": |
---|
396 | |
---|
397 | "Nusselt Number in Transition Flow - Gnielinski Equation" |
---|
398 | Tubes.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*(Tubes.HeatTransfer.Re-1000)*Tubes.HeatTransfer.PR; |
---|
399 | |
---|
400 | case "ESDU": |
---|
401 | |
---|
402 | "Nusselt Number in Transition Flow - ESDU Equation" |
---|
403 | Tubes.HeatTransfer.Nu =1;#to be implemented |
---|
404 | |
---|
405 | end |
---|
406 | |
---|
407 | when Tubes.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
408 | when Tubes.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
409 | |
---|
410 | case "turbulent": |
---|
411 | |
---|
412 | "Friction Factor for heat Transfer : for use in Petukhov Equation" |
---|
413 | Tubes.HeatTransfer.fi = 1/(1.82*log(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
414 | |
---|
415 | "Friction Factor for Pressure Drop in Turbulent Flow" |
---|
416 | Tubes.PressureDrop.FricFactor = 0.0035 + 0.264*Tubes.HeatTransfer.Re^(-0.42); |
---|
417 | |
---|
418 | switch TurbulentCorrelation |
---|
419 | |
---|
420 | case "Petukhov": |
---|
421 | |
---|
422 | "Nusselt Number in Turbulent Flow - Petukhov Equation" |
---|
423 | Tubes.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR; |
---|
424 | |
---|
425 | case "SiederTate": |
---|
426 | |
---|
427 | "Nusselt Number in Transition Flow - Sieder Tate Equation" |
---|
428 | Tubes.HeatTransfer.Nu = 0.027*(Tubes.HeatTransfer.PR)^(1/3)*(Tubes.HeatTransfer.Re)^(4/5); |
---|
429 | |
---|
430 | end |
---|
431 | |
---|
432 | when Tubes.HeatTransfer.Re < 10000 switchto "transition"; |
---|
433 | |
---|
434 | end |
---|
435 | |
---|
436 | switch Pattern |
---|
437 | |
---|
438 | case "Triangle": |
---|
439 | |
---|
440 | "Shell Side Cross Flow Area" |
---|
441 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/Tubes.TubePitch)*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
442 | |
---|
443 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
444 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch); |
---|
445 | |
---|
446 | "Number of Effective Crossflow rows in Each Window" |
---|
447 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/(0.866*Tubes.TubePitch); |
---|
448 | |
---|
449 | "Variable for calculating Ji heat transfer correction Factor" |
---|
450 | a = 1.45/(1+0.14*Shell.HeatTransfer.Re^0.519); |
---|
451 | |
---|
452 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
453 | b=7/(1+0.14*Shell.HeatTransfer.Re^0.5); |
---|
454 | |
---|
455 | "Correction Factor for Pressure Drop" |
---|
456 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch)) ; |
---|
457 | |
---|
458 | "Ideal Shell Side Pressure Drop" |
---|
459 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch))*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
460 | |
---|
461 | "Shell Pressure End Zones" |
---|
462 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch))))*Rb*Rspd; |
---|
463 | |
---|
464 | switch ShellRange |
---|
465 | |
---|
466 | case "range1": |
---|
467 | |
---|
468 | "Ji Factor" |
---|
469 | Ji =1.40*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
470 | |
---|
471 | "Shell Side Pressure Drop Friction Factor" |
---|
472 | Shell.PressureDrop.FricFactor=48*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
473 | |
---|
474 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
475 | |
---|
476 | case "range2": |
---|
477 | |
---|
478 | "Ji Factor" |
---|
479 | Ji =1.36*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.657); |
---|
480 | |
---|
481 | "Shell Side Pressure Drop Friction Factor" |
---|
482 | Shell.PressureDrop.FricFactor=45.10*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.973); |
---|
483 | |
---|
484 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
485 | |
---|
486 | case "range3": |
---|
487 | |
---|
488 | "Ji Factor" |
---|
489 | Ji =0.593*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.477); |
---|
490 | |
---|
491 | "Shell Side Pressure Drop Friction Factor" |
---|
492 | Shell.PressureDrop.FricFactor=4.570*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.476); |
---|
493 | |
---|
494 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
495 | |
---|
496 | case "range4": |
---|
497 | |
---|
498 | "Ji Factor" |
---|
499 | Ji =0.321*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.388); |
---|
500 | |
---|
501 | "Shell Side Pressure Drop Friction Factor" |
---|
502 | Shell.PressureDrop.FricFactor=0.486*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.152); |
---|
503 | |
---|
504 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
505 | |
---|
506 | case "range5": |
---|
507 | |
---|
508 | "Ji Factor" |
---|
509 | Ji =0.321*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.388); |
---|
510 | |
---|
511 | "Shell Side Pressure Drop Friction Factor" |
---|
512 | Shell.PressureDrop.FricFactor=0.372*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.123); |
---|
513 | |
---|
514 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
515 | |
---|
516 | end |
---|
517 | |
---|
518 | case "Rotated Square": |
---|
519 | |
---|
520 | "Shell Side Cross Flow Area" |
---|
521 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/(0.707*Tubes.TubePitch))*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
522 | |
---|
523 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
524 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch); |
---|
525 | |
---|
526 | "Number of Effective Crossflow rows in Each Window" |
---|
527 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/(0.707*Tubes.TubePitch); |
---|
528 | |
---|
529 | "Variable for calculating Ji heat transfer correction Factor" |
---|
530 | a = 1.930/(1+0.14*Shell.HeatTransfer.Re^0.500); |
---|
531 | |
---|
532 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
533 | b=6.59/(1+0.14*Shell.HeatTransfer.Re^0.52); |
---|
534 | |
---|
535 | "Correction Factor for Pressure Drop" |
---|
536 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch)) ; |
---|
537 | |
---|
538 | "Ideal Shell Side Pressure Drop" |
---|
539 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch))*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
540 | |
---|
541 | "Shell Pressure End Zones" |
---|
542 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch))))*Rb*Rspd; |
---|
543 | |
---|
544 | switch ShellRange |
---|
545 | |
---|
546 | case "range1": |
---|
547 | |
---|
548 | "Ji Factor" |
---|
549 | Ji =1.550*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
550 | |
---|
551 | "Shell Side Pressure Drop Friction Factor" |
---|
552 | Shell.PressureDrop.FricFactor=32*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
553 | |
---|
554 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
555 | |
---|
556 | case "range2": |
---|
557 | |
---|
558 | "Ji Factor" |
---|
559 | Ji =0.498*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.656; |
---|
560 | |
---|
561 | "Shell Side Pressure Drop Friction Factor" |
---|
562 | Shell.PressureDrop.FricFactor=26.20*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.913); |
---|
563 | |
---|
564 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
565 | |
---|
566 | case "range3": |
---|
567 | |
---|
568 | "Ji Factor" |
---|
569 | Ji =0.730*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.500; |
---|
570 | |
---|
571 | "Shell Side Pressure Drop Friction Factor" |
---|
572 | Shell.PressureDrop.FricFactor=3.50*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.476); |
---|
573 | |
---|
574 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
575 | |
---|
576 | case "range4": |
---|
577 | |
---|
578 | "Ji Factor" |
---|
579 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.396); |
---|
580 | |
---|
581 | "Shell Side Pressure Drop Friction Factor" |
---|
582 | Shell.PressureDrop.FricFactor=0.333*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.136); |
---|
583 | |
---|
584 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
585 | |
---|
586 | case "range5": |
---|
587 | |
---|
588 | "Ji Factor" |
---|
589 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.396); |
---|
590 | |
---|
591 | "Shell Side Pressure Drop Friction Factor" |
---|
592 | Shell.PressureDrop.FricFactor=0.303*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.126); |
---|
593 | |
---|
594 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
595 | |
---|
596 | end |
---|
597 | |
---|
598 | case "Square": |
---|
599 | |
---|
600 | "Shell Side Cross Flow Area" |
---|
601 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/Tubes.TubePitch)*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
602 | |
---|
603 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
604 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch; |
---|
605 | |
---|
606 | "Number of Effective Crossflow rows in Each Window" |
---|
607 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/Tubes.TubePitch; |
---|
608 | |
---|
609 | "Variable for calculating Ji heat transfer correction Factor" |
---|
610 | a = 1.187/(1+0.14*Shell.HeatTransfer.Re^0.370); |
---|
611 | |
---|
612 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
613 | b=6.30/(1+0.14*Shell.HeatTransfer.Re^0.38); |
---|
614 | |
---|
615 | "Correction Factor for Pressure Drop" |
---|
616 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch) ; |
---|
617 | |
---|
618 | "Ideal Shell Side Pressure Drop" |
---|
619 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch)*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
620 | |
---|
621 | "Shell Pressure End Zones" |
---|
622 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch)))*Rb*Rspd; |
---|
623 | |
---|
624 | switch ShellRange |
---|
625 | |
---|
626 | case "range1": |
---|
627 | |
---|
628 | "Ji Factor" |
---|
629 | Ji =0.970*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.667); |
---|
630 | |
---|
631 | "Shell Side Pressure Drop Friction Factor" |
---|
632 | Shell.PressureDrop.FricFactor=35*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
633 | |
---|
634 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
635 | |
---|
636 | case "range2": |
---|
637 | |
---|
638 | "Ji Factor" |
---|
639 | Ji =0.900*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.631); |
---|
640 | |
---|
641 | "Shell Side Pressure Drop Friction Factor" |
---|
642 | Shell.PressureDrop.FricFactor=32.10*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.963); |
---|
643 | |
---|
644 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
645 | |
---|
646 | case "range3": |
---|
647 | |
---|
648 | "Ji Factor" |
---|
649 | Ji =0.408*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.460); |
---|
650 | |
---|
651 | "Shell Side Pressure Drop Friction Factor" |
---|
652 | Shell.PressureDrop.FricFactor=6.090*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.602); |
---|
653 | |
---|
654 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
655 | |
---|
656 | case "range4": |
---|
657 | |
---|
658 | "Ji Factor" |
---|
659 | Ji =0.107*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.266); |
---|
660 | |
---|
661 | "Shell Side Pressure Drop Friction Factor" |
---|
662 | Shell.PressureDrop.FricFactor=0.0815*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^0.022; |
---|
663 | |
---|
664 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
665 | |
---|
666 | case "range5": |
---|
667 | |
---|
668 | "Ji Factor" |
---|
669 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.395); |
---|
670 | |
---|
671 | "Shell Side Pressure Drop Friction Factor" |
---|
672 | Shell.PressureDrop.FricFactor=0.391*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.148); |
---|
673 | |
---|
674 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
675 | |
---|
676 | end |
---|
677 | |
---|
678 | end |
---|
679 | |
---|
680 | switch ShellFlowRegime |
---|
681 | |
---|
682 | case "deep laminar": |
---|
683 | |
---|
684 | "Jr Factor" |
---|
685 | Jr = (10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18; |
---|
686 | |
---|
687 | "Js Factor" |
---|
688 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.7 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.7)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
689 | |
---|
690 | "Jb Factor" |
---|
691 | Jb = exp(-1.35*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
692 | |
---|
693 | "ByPass Correction Factor for Pressure Drop" |
---|
694 | Rb = exp(-4.7*((Clearances.BundleToShell + Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
695 | |
---|
696 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
697 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing) + (Baffles.Central_Spacing/Baffles.Inlet_Spacing); |
---|
698 | |
---|
699 | "Shell Pressure Drop Baffle Window" |
---|
700 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(Tubes.TubePitch-Tubes.TubeOD)+ Baffles.Central_Spacing/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
701 | |
---|
702 | when Shell.HeatTransfer.Re > 20 switchto "laminar"; |
---|
703 | |
---|
704 | case "laminar": |
---|
705 | |
---|
706 | "Jr Factor" |
---|
707 | Jr = (10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18 + (0.25-0.0125*Shell.HeatTransfer.Re)*((10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18 - 1); |
---|
708 | |
---|
709 | "Js Factor" |
---|
710 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.7 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.7)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
711 | |
---|
712 | "Jb Factor" |
---|
713 | Jb = exp(-1.35*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
714 | |
---|
715 | "ByPass Correction Factor for Pressure Drop" |
---|
716 | Rb = exp(-4.7*((Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
717 | |
---|
718 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
719 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing) + (Baffles.Central_Spacing/Baffles.Inlet_Spacing); |
---|
720 | |
---|
721 | "Shell Pressure Drop Baffle Window" |
---|
722 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(Tubes.TubePitch-Tubes.TubeOD)+ Baffles.Central_Spacing/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
723 | |
---|
724 | when Shell.HeatTransfer.Re < 20 switchto "deep laminar"; |
---|
725 | when Shell.HeatTransfer.Re > 100 switchto "turbulent"; |
---|
726 | |
---|
727 | case "turbulent": |
---|
728 | |
---|
729 | "Jr Factor" |
---|
730 | Jr = 1; |
---|
731 | |
---|
732 | "Js Factor" |
---|
733 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.4 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.4)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
734 | |
---|
735 | "Jb Factor" |
---|
736 | Jb = exp(-1.25*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
737 | |
---|
738 | "ByPass Correction Factor for Pressure Drop" |
---|
739 | Rb = exp(-3.7*((Clearances.BundleToShell + Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
740 | |
---|
741 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
742 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing)^1.8 + (Baffles.Central_Spacing/Baffles.Inlet_Spacing)^1.8; |
---|
743 | |
---|
744 | "Shell Pressure Drop Baffle Window" |
---|
745 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((2+0.6*Ncw)*0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
746 | |
---|
747 | when Shell.HeatTransfer.Re < 100 switchto "laminar"; |
---|
748 | |
---|
749 | end |
---|
750 | |
---|
751 | "Shell Pressure Drop Cross Flow" |
---|
752 | Shell.PressureDrop.CrossFlow= Shell.PressureDrop.Ideal*Rb*(Baffles.NumberOfBaffles-1)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
753 | |
---|
754 | "Shell Side Phi correction" |
---|
755 | Shell.HeatTransfer.Phi = (Shell.Properties.Average.Mu/Shell.Properties.Wall.Mu)^0.14; |
---|
756 | |
---|
757 | "Tube Side Phi correction" |
---|
758 | Tubes.HeatTransfer.Phi = (Tubes.Properties.Average.Mu/Tubes.Properties.Wall.Mu)^0.14; |
---|
759 | |
---|
760 | "Shell Side inlet Nozzle rho-V^2" |
---|
761 | Shell.PressureDrop.RVsquare_in = Shell.Properties.Inlet.rho*(Shell.PressureDrop.Vnozzle_in)^2; |
---|
762 | |
---|
763 | "Shell Side Outlet Nozzle rho-V^2" |
---|
764 | Shell.PressureDrop.RVsquare_out = Shell.Properties.Outlet.rho*(Shell.PressureDrop.Vnozzle_out)^2; |
---|
765 | |
---|
766 | "Tube Side Pressure Drop" |
---|
767 | Tubes.PressureDrop.TubeFriction = 2*Tubes.PressureDrop.FricFactor*Tubes.TubeLength*Tubes.Properties.Average.rho*(Tubes.HeatTransfer.Vtube^2)*Tubes.Tubepasses/(Tubes.TubeID*Tubes.HeatTransfer.Phi); |
---|
768 | |
---|
769 | "Pressure Drop Tube Side Inlet Nozzle" |
---|
770 | Tubes.PressureDrop.InletNozzle = 0.5*Kinlet_Tube*Tubes.Properties.Inlet.rho*Tubes.PressureDrop.Vnozzle_in^2; |
---|
771 | |
---|
772 | "Velocity Tube Side Inlet Nozzle" |
---|
773 | Tubes.PressureDrop.Vnozzle_in = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Inlet.rho*Ainozzle_Tube); |
---|
774 | |
---|
775 | "Pressure Drop Tube Side Outlet Nozzle" |
---|
776 | Tubes.PressureDrop.OutletNozzle = 0.5*Koutlet_Tube*Tubes.Properties.Outlet.rho*Tubes.PressureDrop.Vnozzle_out^2; |
---|
777 | |
---|
778 | "Velocity Tube Side Outlet Nozzle" |
---|
779 | Tubes.PressureDrop.Vnozzle_out = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Outlet.rho*Aonozzle_Tube); |
---|
780 | |
---|
781 | "Shell Pressure Drop Inlet Nozzle" |
---|
782 | Shell.PressureDrop.InletNozzle = (0.5*Shell.Properties.Inlet.Fw^2/Shell.Properties.Inlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
783 | |
---|
784 | "Velocity Shell Side Inlet Nozzle" |
---|
785 | Shell.PressureDrop.Vnozzle_in = Shell.Properties.Inlet.Fw/(Shell.Properties.Inlet.rho*Ainozzle_Shell); |
---|
786 | |
---|
787 | "Shell Pressure Drop Outlet Nozzle" |
---|
788 | Shell.PressureDrop.OutletNozzle = (0.5*Shell.Properties.Outlet.Fw^2/Shell.Properties.Outlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
789 | |
---|
790 | "Velocity Shell Side Outlet Nozzle" |
---|
791 | Shell.PressureDrop.Vnozzle_out = Shell.Properties.Outlet.Fw/(Shell.Properties.Outlet.rho*Aonozzle_Shell); |
---|
792 | |
---|
793 | "Pressure Drop Shell Stream" |
---|
794 | OutletShell.P = InletShell.P - Shell.PressureDrop.Total; |
---|
795 | |
---|
796 | "Pressure Drop Tube Stream" |
---|
797 | OutletTube.P = InletTube.P - Tubes.PressureDrop.Total; |
---|
798 | |
---|
799 | "Shell Wall Temperature" |
---|
800 | Shell.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
801 | |
---|
802 | "Tube Wall Temperature" |
---|
803 | Tubes.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
804 | |
---|
805 | "Tube Side Velocity" |
---|
806 | Tubes.HeatTransfer.Vtube = Tubes.Properties.Inlet.Fw*Tubes.Tubepasses/((Pi*Tubes.TubeID*Tubes.TubeID/4)*Tubes.Properties.Average.rho*Tubes.NumberOfTubes); |
---|
807 | |
---|
808 | "Tube Side Reynolds Number" |
---|
809 | Tubes.HeatTransfer.Re = (Tubes.Properties.Average.rho*Tubes.HeatTransfer.Vtube*Tubes.TubeID)/Tubes.Properties.Average.Mu; |
---|
810 | |
---|
811 | "Tube Side Prandtl Number" |
---|
812 | Tubes.HeatTransfer.PR = ((Tubes.Properties.Average.Cp/Tubes.Properties.Average.Mw)*Tubes.Properties.Average.Mu)/Tubes.Properties.Average.K; |
---|
813 | |
---|
814 | "Tube Side Film Coefficient" |
---|
815 | Tubes.HeatTransfer.htube= (Tubes.HeatTransfer.Nu*Tubes.Properties.Average.K/Tubes.TubeID)*Tubes.HeatTransfer.Phi; |
---|
816 | |
---|
817 | "Shell Side Prandtl Number" |
---|
818 | Shell.HeatTransfer.PR = ((Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*Shell.Properties.Average.Mu)/Shell.Properties.Average.K; |
---|
819 | |
---|
820 | "Overall Heat Transfer Coefficient Dirty" |
---|
821 | Details.Ud=1/(Tubes.TubeOD/(Tubes.HeatTransfer.htube*Tubes.TubeID)+Shell.Fouling+Tubes.Fouling*(Tubes.TubeOD/Tubes.TubeID)+(Tubes.TubeOD*ln(Tubes.TubeOD/Tubes.TubeID)/(2*Tubes.Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
822 | |
---|
823 | "Overall Heat Transfer Coefficient Clean" |
---|
824 | Details.Uc=1/(Tubes.TubeOD/(Tubes.HeatTransfer.htube*Tubes.TubeID)+(Tubes.TubeOD*ln(Tubes.TubeOD/Tubes.TubeID)/(2*Tubes.Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
825 | |
---|
826 | "Exchange Surface Area" |
---|
827 | Details.A=Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength; |
---|
828 | |
---|
829 | "Baffle Spacing Constraint" |
---|
830 | Tubes.TubeLength = Baffles.Inlet_Spacing+Baffles.Outlet_Spacing+Baffles.Central_Spacing*(Baffles.NumberOfBaffles-1); |
---|
831 | |
---|
832 | "Shell Side Reynolds Number" |
---|
833 | Shell.HeatTransfer.Re = (Tubes.TubeOD*Shell.Properties.Inlet.Fw/Sm)/Shell.Properties.Average.Mu; |
---|
834 | |
---|
835 | "Shell Heat Transfer Coefficient" |
---|
836 | Shell.HeatTransfer.hshell = Ji*(Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*(Shell.Properties.Inlet.Fw/Sm)*(Shell.HeatTransfer.PR^(-2/3))*Jtotal*Shell.HeatTransfer.Phi; |
---|
837 | |
---|
838 | end |
---|
839 | |
---|
840 | Model ShellandTubes_NTU as ShellandTubesBasic |
---|
841 | |
---|
842 | ATTRIBUTES |
---|
843 | Pallete = true; |
---|
844 | Icon = "icon/ShellandTubes_NTU"; |
---|
845 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
846 | Info = |
---|
847 | "to be documented"; |
---|
848 | |
---|
849 | VARIABLES |
---|
850 | |
---|
851 | Method as NTU_Basic (Brief="NTU Method"); |
---|
852 | |
---|
853 | EQUATIONS |
---|
854 | |
---|
855 | "Number of Units Transference" |
---|
856 | Method.NTU*Method.Cmin = Details.Ud*Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength; |
---|
857 | |
---|
858 | "Minimum Heat Capacity" |
---|
859 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
860 | |
---|
861 | "Maximum Heat Capacity" |
---|
862 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
863 | |
---|
864 | "Thermal Capacity Ratio" |
---|
865 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
866 | |
---|
867 | switch HotSide |
---|
868 | |
---|
869 | case "shell": |
---|
870 | |
---|
871 | "Duty" |
---|
872 | Details.Q = Method.Eft*Method.Cmin*(InletShell.T-InletTube.T); |
---|
873 | |
---|
874 | "Hot Stream Heat Capacity" |
---|
875 | Method.Ch = InletShell.F*Shell.Properties.Average.Cp; |
---|
876 | |
---|
877 | "Cold Stream Heat Capacity" |
---|
878 | Method.Cc = InletTube.F*Tubes.Properties.Average.Cp; |
---|
879 | |
---|
880 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
881 | |
---|
882 | case "tubes": |
---|
883 | |
---|
884 | "Duty" |
---|
885 | Details.Q = Method.Eft*Method.Cmin*(InletTube.T-InletShell.T); |
---|
886 | |
---|
887 | "Hot Stream Heat Capacity" |
---|
888 | Method.Cc = InletShell.F*Shell.Properties.Average.Cp; |
---|
889 | |
---|
890 | "Cold Stream Heat Capacity" |
---|
891 | Method.Ch = InletTube.F*Tubes.Properties.Average.Cp; |
---|
892 | |
---|
893 | when InletTube.T < InletShell.T switchto "shell"; |
---|
894 | |
---|
895 | end |
---|
896 | |
---|
897 | switch ShellType |
---|
898 | |
---|
899 | case "Fshell": |
---|
900 | |
---|
901 | "Effectiveness Correction for 2 pass shell side" |
---|
902 | Method.Eft1 = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^(-1); |
---|
903 | |
---|
904 | "TEMA F Shell Effectiveness" |
---|
905 | Method.Eft = ( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 -1 )*( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 - Method.Cr )^(-1); |
---|
906 | |
---|
907 | case "Eshell": |
---|
908 | |
---|
909 | "TEMA E Shell Effectiveness" |
---|
910 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^(-1); |
---|
911 | # Method.Eft = 1; |
---|
912 | |
---|
913 | "Variable not in use when 1 Pass Shell Side" |
---|
914 | Method.Eft1 = 1; |
---|
915 | |
---|
916 | end |
---|
917 | |
---|
918 | end |
---|
919 | |
---|
920 | Model ShellandTubes_LMTD as ShellandTubesBasic |
---|
921 | |
---|
922 | ATTRIBUTES |
---|
923 | Pallete = true; |
---|
924 | Icon = "icon/ShellandTubes_LMTD"; |
---|
925 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
926 | Info = |
---|
927 | "to be documented."; |
---|
928 | |
---|
929 | PARAMETERS |
---|
930 | |
---|
931 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakeri"],Default="Bowmann"); |
---|
932 | |
---|
933 | VARIABLES |
---|
934 | |
---|
935 | Method as LMTD_Basic; |
---|
936 | R as positive (Brief=" Capacity Ratio for LMTD Correction Fator",Lower=1e-6); |
---|
937 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6); |
---|
938 | Pc as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side",Lower=1e-6); |
---|
939 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
940 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
941 | lambdaN as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation when 2 Pass Shell Side",Lower=1e-6); |
---|
942 | lambda1 as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equationwhen 2 Pass Shell Side",Lower=1e-6); |
---|
943 | |
---|
944 | EQUATIONS |
---|
945 | |
---|
946 | "Exchange Surface Area" |
---|
947 | Details.Q = Details.Ud*Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength*Method.LMTD*Method.Fc; |
---|
948 | |
---|
949 | switch HotSide |
---|
950 | |
---|
951 | case "shell": |
---|
952 | |
---|
953 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
954 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
955 | |
---|
956 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
957 | R*(OutletTube.T - InletTube.T ) = (InletShell.T-OutletShell.T); |
---|
958 | |
---|
959 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
960 | P*(InletShell.T- InletTube.T)= (OutletTube.T-InletTube.T); |
---|
961 | |
---|
962 | "Temperature Difference at Inlet" |
---|
963 | Method.DT0 = InletShell.T - OutletTube.T; |
---|
964 | |
---|
965 | "Temperature Difference at Outlet" |
---|
966 | Method.DTL = OutletShell.T - InletTube.T; |
---|
967 | |
---|
968 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
969 | |
---|
970 | case "tubes": |
---|
971 | |
---|
972 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
973 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
974 | |
---|
975 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
976 | R*(OutletShell.T - InletShell.T ) = (InletTube.T-OutletTube.T); |
---|
977 | |
---|
978 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
979 | P*(InletTube.T- InletShell.T)= (OutletShell.T-InletShell.T); |
---|
980 | |
---|
981 | "Temperature Difference at Inlet" |
---|
982 | Method.DT0 = InletTube.T - OutletShell.T; |
---|
983 | |
---|
984 | "Temperature Difference at Outlet" |
---|
985 | Method.DTL = OutletTube.T - InletShell.T; |
---|
986 | |
---|
987 | |
---|
988 | when InletTube.T < InletShell.T switchto "shell"; |
---|
989 | |
---|
990 | end |
---|
991 | |
---|
992 | switch ShellType |
---|
993 | |
---|
994 | case "Fshell": |
---|
995 | |
---|
996 | switch LMTDcorrection |
---|
997 | |
---|
998 | case "Bowmann": |
---|
999 | |
---|
1000 | " Variable not in use with Bowmann equation" |
---|
1001 | lambdaN =1; |
---|
1002 | |
---|
1003 | " Variable not in use with Bowmann equation" |
---|
1004 | lambda1 =1; |
---|
1005 | |
---|
1006 | #" Variable not in use with Bowmann equation" |
---|
1007 | # Phi = 1; |
---|
1008 | |
---|
1009 | " Variable not in use with Bowmann equation" |
---|
1010 | Rho =1; |
---|
1011 | |
---|
1012 | if R equal 1 |
---|
1013 | |
---|
1014 | then |
---|
1015 | |
---|
1016 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1017 | Pc*(2-P)= P; |
---|
1018 | |
---|
1019 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1020 | Method.Fc= (sqrt(2)*Pc)/((1-Pc)*ln( abs( ( 2-Pc*0.585786)/( 2-Pc*3.414214)))); |
---|
1021 | |
---|
1022 | else |
---|
1023 | |
---|
1024 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
1025 | Pc = (sqrt(abs(( 1-P*R)/(1-P)))-1)/(sqrt(abs(( 1-P*R)/(1-P)))-R); |
---|
1026 | |
---|
1027 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1028 | Method.Fc = sqrt(R*R+1)*ln(abs((1-Pc*R)/(1-Pc)))/((1-R)*ln( abs( ( 2-Pc*(R+1-sqrt(R*R+1)))/ ( 2-Pc*(R + 1 + sqrt(R*R+1)))))); |
---|
1029 | |
---|
1030 | end |
---|
1031 | |
---|
1032 | case "Fakeri": |
---|
1033 | |
---|
1034 | " Variable not in use with Fakeri equation" |
---|
1035 | Pc = P; |
---|
1036 | |
---|
1037 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1038 | Rho*(1-P*R) = (1-P); |
---|
1039 | |
---|
1040 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1041 | # Phi = (sqrt(((Inlet.Hot.T - Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T + Outlet.Hot.T)-( Inlet.Cold.T + Outlet.Cold.T))); |
---|
1042 | |
---|
1043 | if Rho equal 1 |
---|
1044 | |
---|
1045 | then |
---|
1046 | |
---|
1047 | " Variable not in use when Rho = 1" |
---|
1048 | lambdaN = 1; |
---|
1049 | |
---|
1050 | " Variable not in use when Rho = 1" |
---|
1051 | lambda1 = 1; |
---|
1052 | |
---|
1053 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1054 | Method.Fc = (2*Phi )/(ln(abs((1+Phi )/(1-Phi )))); |
---|
1055 | |
---|
1056 | else |
---|
1057 | |
---|
1058 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1059 | lambdaN = (1/ln(sqrt(abs(Rho))))*((2*sqrt(abs(Rho))-2)/(sqrt(abs(Rho))+1)); |
---|
1060 | |
---|
1061 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1062 | lambda1 = (1/ln(abs(Rho)))*((2*Rho-2)/(Rho+1)); |
---|
1063 | |
---|
1064 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
1065 | Method.Fc = ((2*Phi *(lambdaN/lambda1))/(ln(abs((1+Phi *(lambdaN/lambda1))/(1-Phi *(lambdaN/lambda1))))))*(1/lambdaN); |
---|
1066 | |
---|
1067 | end |
---|
1068 | |
---|
1069 | |
---|
1070 | end |
---|
1071 | |
---|
1072 | case "Eshell": |
---|
1073 | |
---|
1074 | " Variable not in use when 1 Pass Shell Side" |
---|
1075 | lambdaN =1; |
---|
1076 | |
---|
1077 | " Variable not in use when 1 Pass Shell Side" |
---|
1078 | lambda1 =1; |
---|
1079 | |
---|
1080 | " Variable not in use when 1 Pass Shell Side" |
---|
1081 | Pc = P; |
---|
1082 | |
---|
1083 | switch LMTDcorrection |
---|
1084 | |
---|
1085 | case "Bowmann": |
---|
1086 | |
---|
1087 | #" Variable not in use with Bowmann equation" |
---|
1088 | # Phi = 1; |
---|
1089 | |
---|
1090 | " Variable not in use with Bowmann equation" |
---|
1091 | Rho = 1; |
---|
1092 | |
---|
1093 | |
---|
1094 | if R equal 1 |
---|
1095 | |
---|
1096 | then |
---|
1097 | |
---|
1098 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1099 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
1100 | |
---|
1101 | else |
---|
1102 | |
---|
1103 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1104 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
1105 | |
---|
1106 | end |
---|
1107 | |
---|
1108 | case "Fakeri": |
---|
1109 | |
---|
1110 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
1111 | # Phi = (sqrt(((Inlet.Hot.T- Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T+ Outlet.Hot.T)-(Inlet.Cold.T+ Outlet.Cold.T))); |
---|
1112 | |
---|
1113 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
1114 | Rho*(1-P*R) = (1-P); |
---|
1115 | |
---|
1116 | if Rho equal 1 |
---|
1117 | |
---|
1118 | then |
---|
1119 | |
---|
1120 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1121 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
1122 | |
---|
1123 | else |
---|
1124 | |
---|
1125 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
1126 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
1127 | |
---|
1128 | end |
---|
1129 | |
---|
1130 | end |
---|
1131 | |
---|
1132 | |
---|
1133 | end |
---|
1134 | |
---|
1135 | end |
---|
1136 | |
---|