[490] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | *-------------------------------------------------------------------- |
---|
| 15 | * Author: Gerson Balbueno Bicca |
---|
| 16 | * $Id: HeatExchangerDetailed.mso 197 2007-03-08 14:31:57Z bicca $ |
---|
| 17 | *------------------------------------------------------------------*# |
---|
| 18 | using "heat_exchangers/HEX_Engine"; |
---|
| 19 | |
---|
| 20 | Model ShellandTubesBasic |
---|
| 21 | |
---|
| 22 | ATTRIBUTES |
---|
| 23 | Pallete = false; |
---|
| 24 | Brief = "Basic Model for Detailed Shell and Tube Heat Exchanger."; |
---|
| 25 | Info = |
---|
[492] | 26 | "to be documented. |
---|
| 27 | |
---|
| 28 | == Assumptions == |
---|
| 29 | * to be documented |
---|
[490] | 30 | |
---|
[492] | 31 | == Specify == |
---|
| 32 | * to be documented |
---|
| 33 | |
---|
| 34 | == Setting Parameters == |
---|
| 35 | * to be documented |
---|
| 36 | |
---|
| 37 | == References == |
---|
| 38 | [1] E.A.D. Saunders, Heat Exchangers: Selection, Design and |
---|
| 39 | Construction, Longman, Harlow, 1988. |
---|
| 40 | |
---|
| 41 | [2] Taborek, J., Shell-and-tube heat exchangers, in Heat Exchanger Design Handbook, Vol. 3 |
---|
| 42 | Hemisphere Publishing Corp., New York, 1988. |
---|
| 43 | |
---|
| 44 | [3] Bell, K. J., Mueller, A. C., Wolverine Engineering Data Book II. Wolverine Tube, Inc., <www.wlv.com>, 2001. |
---|
| 45 | |
---|
| 46 | [4] Fakheri, A. , Alternative approach for determining log mean temperature difference correction factor |
---|
| 47 | and number of shells of shell and tube heat exchangers, Journal of Enhanced Heat Transfer, v. 10, p. 407- 420, 2003. |
---|
| 48 | |
---|
| 49 | [5] Gnielinski, V., Forced convection in ducts, in Heat Exchanger Design Handbook, Vol. 2 |
---|
| 50 | Hemisphere Publishing Corp., New York, 1988."; |
---|
| 51 | |
---|
[490] | 52 | PARAMETERS |
---|
| 53 | |
---|
| 54 | HotSide as Switcher (Brief="Hot Side in the Exchanger",Valid=["shell","tubes"],Default="shell"); |
---|
| 55 | ShellType as Switcher (Brief="TEMA Designation",Valid=["Eshell","Fshell"],Default="Eshell"); |
---|
[492] | 56 | Pattern as Switcher (Brief="Tube Layout Characteristic Angle",Valid=["Triangle","Rotated Square","Square"],Default="Triangle"); |
---|
[490] | 57 | |
---|
| 58 | VARIABLES |
---|
| 59 | |
---|
[492] | 60 | Tubes as Tube_Side_Main (Brief="Tube Side Section" , Symbol="^{tube}"); |
---|
| 61 | Shell as Shell_Side_Main (Brief="Shell Side Section" , Symbol="^{shell}"); |
---|
[490] | 62 | Baffles as Baffles_Main (Brief="Baffle Section", Symbol=" "); |
---|
| 63 | Clearances as Clearances_Main (Brief="Diametral Clearances", Symbol=" "); |
---|
| 64 | |
---|
[492] | 65 | in InletTube as stream (Brief="Inlet Tube Stream", PosX=0.08, PosY=0, Symbol="_{in }^{tube}"); |
---|
| 66 | out OutletTube as streamPH (Brief="Outlet Tube Stream", PosX=0.08, PosY=1, Symbol="_{out }^{tube}"); |
---|
| 67 | in InletShell as stream (Brief="Inlet Shell Stream", PosX=0.2237, PosY=0, Symbol="_{in }^{shell}"); |
---|
| 68 | out OutletShell as streamPH (Brief="Outlet Shell Stream", PosX=0.8237, PosY=1, Symbol="_{out }^{shell}"); |
---|
| 69 | Details as Details_Main (Brief="Details in Heat Exchanger", Symbol = " "); |
---|
[490] | 70 | |
---|
| 71 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
| 72 | # Auxiliar Variables - Must be hidden |
---|
| 73 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
| 74 | Nc as Real (Brief = "Number of Tube rows Crossed in one Crossflow Section", Hidden = true, Lower=1); |
---|
| 75 | Ncw as Real (Brief = "Number of Effective Crossflow rows in Each Window", Hidden = true, Lower=1); |
---|
| 76 | a as Real (Brief = "Variable for calculating Ji heat transfer correction Factor", Hidden = true, Lower=1e-3); |
---|
| 77 | b as Real (Brief = "Variable for calculating shell side pressure drop friction Factor", Hidden = true, Lower=1e-3); |
---|
| 78 | Rb as Real (Brief = "ByPass Correction Factor for Pressure Drop", Hidden = true, Lower=1e-3); |
---|
| 79 | Rss as Real (Brief = "Correction Factor for Pressure Drop", Hidden = true, Lower=1e-3); |
---|
| 80 | Rspd as Real (Brief = "Pressure Drop Correction Factor for Unequal Baffle Spacing", Hidden = true, Lower=1e-3); |
---|
| 81 | mw as Real (Brief = "Mass Velocity in Window Zone", Hidden = true, Unit='kg/m^2/s'); |
---|
[492] | 82 | Ji as constant (Brief="Shell Side Ji Factor", Symbol ="J_i", Hidden = true, Default=0.05); |
---|
| 83 | Jr as positive (Brief="Shell Side Jr Factor", Symbol ="J_r", Hidden = true, Lower=10e-6); |
---|
| 84 | Jl as positive (Brief="Shell Side Jl Factor", Symbol ="J_l", Hidden = true, Lower=10e-6); |
---|
| 85 | Jb as positive (Brief="Shell Side Jb Factor", Symbol ="J_b", Hidden = true, Lower=10e-6); |
---|
| 86 | Jc as positive (Brief="Shell Side Jc Factor", Symbol ="J_c", Hidden = true, Lower=10e-6); |
---|
| 87 | Js as positive (Brief="Shell Side Js Factor", Symbol ="J_s", Hidden = true, Lower=10e-6); |
---|
| 88 | Jtotal as positive (Brief="Shell Side Jtotal Factor", Symbol ="J_{total}", Hidden = true, Lower=10e-6); |
---|
| 89 | Sm as area (Brief="Shell Side Cross Flow Area", Symbol ="S_m", Hidden = true, Default=0.05,Lower=10e-6); |
---|
[490] | 90 | |
---|
| 91 | PARAMETERS |
---|
| 92 | outer PP as Plugin (Brief="External Physical Properties",Type = "PP"); |
---|
| 93 | outer NComp as Integer (Brief="Number of Components"); |
---|
| 94 | |
---|
| 95 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
| 96 | |
---|
| 97 | TubeFlowRegime as Switcher (Brief="Tube Side Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
| 98 | ShellFlowRegime as Switcher (Brief="Shell Side Flow Regime ",Valid=["deep laminar","laminar","turbulent"],Default="deep laminar"); |
---|
| 99 | ShellRange as Switcher (Brief="Shell Side Flow Regime Range for Correction Factor",Valid=["range1","range2","range3", "range4","range5"],Default="range1"); |
---|
| 100 | Side as Switcher (Brief="Flag for Fluid Alocation ",Valid=["shell","tubes"],Default="shell"); |
---|
| 101 | LaminarCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Laminar Flow",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
| 102 | TransitionCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Transition Flow",Valid=["Gnielinski","ESDU"],Default="Gnielinski"); |
---|
| 103 | TurbulentCorrelation as Switcher (Brief="Tube Heat Transfer Correlation in Turbulent Flow",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
| 104 | |
---|
| 105 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
| 106 | # Auxiliar Parameters - Must be hidden |
---|
| 107 | #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# |
---|
[492] | 108 | Pi as constant (Brief="Pi Number", Hidden = true, Default=3.14159265, Symbol = "\pi"); |
---|
| 109 | Aonozzle_Shell as area (Brief="Shell Outlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_out }^{shell}"); |
---|
| 110 | Ainozzle_Shell as area (Brief="Shell Inlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_in }^{shell}"); |
---|
| 111 | Aeonozzle_Shell as area (Brief="Shell Outlet Escape Area Under Nozzle", Hidden = true, Lower=1E-6 , Symbol ="Aescape_{nozzle\_out }^{shell}"); |
---|
| 112 | Aeinozzle_Shell as area (Brief="Shell Inlet Escape Area Under Nozzle",Hidden = true, Lower=1E-6 , Symbol ="Aescape_{nozzle\_in }^{shell}"); |
---|
| 113 | Aonozzle_Tube as area (Brief="Tube Outlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_out }^{tube}"); |
---|
| 114 | Ainozzle_Tube as area (Brief="Tube Inlet Nozzle Area", Hidden = true, Lower=1E-6 , Symbol ="A_{nozzle\_in }^{tube}"); |
---|
| 115 | Kinlet_Tube as positive (Brief="Tube Inlet Nozzle Pressure Loss Coeff", Hidden = true, Default=1.1, Symbol ="K_{in }^{tube}"); |
---|
| 116 | Koutlet_Tube as positive (Brief="Tube Outlet Nozzle Pressure Loss Coeff",Hidden = true, Default=0.7, Symbol ="K_{out }^{tube}"); |
---|
[490] | 117 | Ods as Real (Brief="Baffle cut angle in degrees", Symbol = "\theta _{ds}", Hidden = true); |
---|
| 118 | Octl as Real (Brief="Baffle cut angle relative to the centerline in degrees", Symbol = "\theta _{ctl}", Hidden = true); |
---|
| 119 | Ftw as Real (Brief="Fraction of number of tubes in baffle window", Symbol = "F _{tw}", Hidden = true); |
---|
| 120 | Scd as area (Brief="Shell to baffle leakage area", Symbol = "S _{cd}", Hidden = true); |
---|
| 121 | Std as area (Brief="Tube to baffle hole leakage area", Symbol = "S _{td}", Hidden = true); |
---|
| 122 | Rs as Real (Brief="Ratio of the shell to baffle leakage area", Symbol = "R_s", Hidden = true); |
---|
| 123 | Dw as length (Brief="Hydraulic diameter of the baffle window", Symbol = "D _w", Hidden = true); |
---|
| 124 | |
---|
| 125 | SET |
---|
| 126 | |
---|
| 127 | #"Molecular weight" |
---|
| 128 | M = PP.MolecularWeight(); |
---|
| 129 | |
---|
| 130 | #"Pi Number" |
---|
| 131 | Pi = 3.14159265; |
---|
| 132 | |
---|
| 133 | #"Baffle cut angle in degrees" |
---|
| 134 | Ods = (360/Pi)*acos(1-0.02*Baffles.BaffleCut); |
---|
| 135 | |
---|
| 136 | #"Baffle cut angle relative to the centerline" |
---|
| 137 | Octl = (360/Pi)*acos((Shell.ShellID/(Shell.ShellID - Clearances.BundleToShell - Tubes.TubeOD))*(1-0.02*Baffles.BaffleCut)); |
---|
| 138 | |
---|
| 139 | #"Fraction of number of tubes in baffle window" |
---|
| 140 | Ftw = (Octl/360)-sin(Octl*Pi/180)/(2*Pi); |
---|
| 141 | |
---|
| 142 | #"Shell to baffle leakage area" |
---|
| 143 | Scd = Pi*Shell.ShellID*Clearances.BaffleToShell *((360-Ods)/720); |
---|
| 144 | |
---|
| 145 | #"Tube to baffle hole leakage area" |
---|
| 146 | Std = Pi*0.25*((Clearances.TubeToBaffle + Tubes.TubeOD)^2-Tubes.TubeOD*Tubes.TubeOD)*Tubes.NumberOfTubes*(1-Ftw); |
---|
| 147 | |
---|
| 148 | #"comments" |
---|
| 149 | Rs = Scd/(Scd+Std); |
---|
| 150 | |
---|
| 151 | #"comments" |
---|
| 152 | Dw = (4*abs((Pi*Shell.ShellID*Shell.ShellID*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Tubes.NumberOfTubes*Pi*Tubes.TubeOD*Tubes.TubeOD*Ftw/4)))/(Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Ftw+ Pi*Shell.ShellID*Ods/360); |
---|
| 153 | |
---|
| 154 | #"Tube Side Inlet Nozzle Area" |
---|
| 155 | Ainozzle_Tube = 0.25*Pi*Tubes.InletNozzleID^2; |
---|
| 156 | |
---|
| 157 | #"Tube Side Outlet Nozzle Area" |
---|
| 158 | Aonozzle_Tube = 0.25*Pi*Tubes.OutletNozzleID^2; |
---|
| 159 | |
---|
| 160 | #"Tube Inlet Nozzle Pressure Loss Coeff" |
---|
| 161 | Kinlet_Tube = 1.1; |
---|
| 162 | |
---|
| 163 | #"Tube Outlet Nozzle Pressure Loss Coeff" |
---|
| 164 | Koutlet_Tube = 0.7; |
---|
| 165 | |
---|
| 166 | #"Shell Outlet Nozzle Area" |
---|
| 167 | Aonozzle_Shell = 0.25*Pi*Shell.OutletNozzleID^2; |
---|
| 168 | |
---|
| 169 | #"Shell Inlet Nozzle Area" |
---|
| 170 | Ainozzle_Shell = 0.25*Pi*Shell.InletNozzleID^2; |
---|
| 171 | |
---|
| 172 | #"Shell Outlet Escape Area Under Nozzle" |
---|
| 173 | Aeonozzle_Shell = Pi*Shell.OutletNozzleID*Clearances.Honozzle_Shell + 0.6*Aonozzle_Shell*(1-(Tubes.TubeOD/Tubes.TubePitch)); |
---|
| 174 | |
---|
| 175 | #"Shell Inlet Escape Area Under Nozzle" |
---|
| 176 | Aeinozzle_Shell = Pi*Shell.InletNozzleID*Clearances.Hinozzle_Shell + 0.6*Ainozzle_Shell*(1-(Tubes.TubeOD/Tubes.TubePitch)); |
---|
| 177 | |
---|
| 178 | EQUATIONS |
---|
| 179 | |
---|
| 180 | "Shell Stream Average Temperature" |
---|
| 181 | Shell.Properties.Average.T = 0.5*InletShell.T + 0.5*OutletShell.T; |
---|
| 182 | |
---|
| 183 | "Tube Stream Average Temperature" |
---|
[492] | 184 | Tubes.Properties.Average.T = 0.5*InletTube.T + 0.5*OutletTube.T; |
---|
[490] | 185 | |
---|
| 186 | "Shell Stream Average Pressure" |
---|
| 187 | Shell.Properties.Average.P = 0.5*InletShell.P+0.5*OutletShell.P; |
---|
| 188 | |
---|
| 189 | "Tube Stream Average Pressure" |
---|
[492] | 190 | Tubes.Properties.Average.P = 0.5*InletTube.P+0.5*OutletTube.P; |
---|
[490] | 191 | |
---|
| 192 | "Shell Stream Average Molecular Weight" |
---|
| 193 | Shell.Properties.Average.Mw = sum(M*InletShell.z); |
---|
| 194 | |
---|
| 195 | "Tube Stream Average Molecular Weight" |
---|
| 196 | Tubes.Properties.Average.Mw = sum(M*OutletTube.z); |
---|
| 197 | |
---|
| 198 | if InletTube.v equal 0 |
---|
| 199 | |
---|
| 200 | then |
---|
| 201 | |
---|
| 202 | "Tube Stream Average Heat Capacity" |
---|
| 203 | Tubes.Properties.Average.Cp = PP.LiquidCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 204 | |
---|
| 205 | "Tube Stream Average Mass Density" |
---|
| 206 | Tubes.Properties.Average.rho = PP.LiquidDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 207 | |
---|
| 208 | "Tube Stream Inlet Mass Density" |
---|
| 209 | Tubes.Properties.Inlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
| 210 | |
---|
| 211 | "Tube Stream Outlet Mass Density" |
---|
| 212 | Tubes.Properties.Outlet.rho = PP.LiquidDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
| 213 | |
---|
| 214 | "TubeStream Average Viscosity" |
---|
| 215 | Tubes.Properties.Average.Mu = PP.LiquidViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 216 | |
---|
| 217 | "Tube Stream Average Conductivity" |
---|
| 218 | Tubes.Properties.Average.K = PP.LiquidThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 219 | |
---|
| 220 | "Tube Stream Viscosity at Wall Temperature" |
---|
| 221 | Tubes.Properties.Wall.Mu = PP.LiquidViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 222 | |
---|
| 223 | else |
---|
| 224 | |
---|
| 225 | "Tube Stream Average Heat Capacity" |
---|
| 226 | Tubes.Properties.Average.Cp = PP.VapourCp(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 227 | |
---|
| 228 | "Tube Stream Average Mass Density" |
---|
| 229 | Tubes.Properties.Average.rho = PP.VapourDensity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 230 | |
---|
| 231 | "Tube Stream Inlet Mass Density" |
---|
| 232 | Tubes.Properties.Inlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
| 233 | |
---|
| 234 | "Tube Stream Outlet Mass Density" |
---|
| 235 | Tubes.Properties.Outlet.rho = PP.VapourDensity(OutletTube.T,OutletTube.P,OutletTube.z); |
---|
| 236 | |
---|
| 237 | "Tube Stream Average Viscosity " |
---|
| 238 | Tubes.Properties.Average.Mu = PP.VapourViscosity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 239 | |
---|
| 240 | "Tube Stream Average Conductivity " |
---|
| 241 | Tubes.Properties.Average.K = PP.VapourThermalConductivity(Tubes.Properties.Average.T,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 242 | |
---|
| 243 | "Tube Stream Viscosity at Wall Temperature" |
---|
| 244 | Tubes.Properties.Wall.Mu = PP.VapourViscosity(Tubes.Properties.Wall.Twall,Tubes.Properties.Average.P,OutletTube.z); |
---|
| 245 | |
---|
| 246 | end |
---|
| 247 | |
---|
| 248 | if InletShell.v equal 0 |
---|
| 249 | |
---|
| 250 | then |
---|
| 251 | |
---|
| 252 | "Shell Stream Average Heat Capacity" |
---|
| 253 | Shell.Properties.Average.Cp = PP.LiquidCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 254 | |
---|
| 255 | "Shell Stream Average Mass Density" |
---|
| 256 | Shell.Properties.Average.rho = PP.LiquidDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 257 | |
---|
| 258 | "ShellStream Inlet Mass Density" |
---|
| 259 | Shell.Properties.Inlet.rho = PP.LiquidDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
| 260 | |
---|
| 261 | "Shell Stream Outlet Mass Density" |
---|
| 262 | Shell.Properties.Outlet.rho = PP.LiquidDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
| 263 | |
---|
| 264 | "Shell Stream Average Viscosity" |
---|
| 265 | Shell.Properties.Average.Mu = PP.LiquidViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 266 | |
---|
| 267 | "Shell Stream Average Conductivity" |
---|
| 268 | Shell.Properties.Average.K = PP.LiquidThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 269 | |
---|
| 270 | "ShellStream Viscosity at Wall Temperature" |
---|
| 271 | Shell.Properties.Wall.Mu = PP.LiquidViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | else |
---|
| 275 | |
---|
| 276 | "Shell Stream Average Heat Capacity" |
---|
| 277 | Shell.Properties.Average.Cp = PP.VapourCp(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 278 | |
---|
| 279 | "Shell Stream Average Mass Density" |
---|
| 280 | Shell.Properties.Average.rho = PP.VapourDensity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 281 | |
---|
| 282 | "Shell Stream Inlet Mass Density" |
---|
| 283 | Shell.Properties.Inlet.rho = PP.VapourDensity(InletShell.T,InletShell.P,InletShell.z); |
---|
| 284 | |
---|
| 285 | "Shell Stream Outlet Mass Density" |
---|
| 286 | Shell.Properties.Outlet.rho = PP.VapourDensity(OutletShell.T,OutletShell.P,OutletShell.z); |
---|
| 287 | |
---|
| 288 | "Shell Stream Average Viscosity" |
---|
| 289 | Shell.Properties.Average.Mu = PP.VapourViscosity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 290 | |
---|
| 291 | "Shell Stream Average Conductivity" |
---|
| 292 | Shell.Properties.Average.K = PP.VapourThermalConductivity(Shell.Properties.Average.T,Shell.Properties.Average.P,InletShell.z); |
---|
| 293 | |
---|
| 294 | "Shell Stream Viscosity at Wall Temperature" |
---|
| 295 | Shell.Properties.Wall.Mu = PP.VapourViscosity(Shell.Properties.Wall.Twall,Shell.Properties.Average.P,InletShell.z); |
---|
| 296 | |
---|
| 297 | end |
---|
| 298 | |
---|
| 299 | switch Side |
---|
| 300 | |
---|
| 301 | case "shell": |
---|
| 302 | |
---|
| 303 | "Energy Balance Hot Stream" |
---|
| 304 | Details.Q = InletShell.F*(InletShell.h-OutletShell.h); |
---|
| 305 | |
---|
| 306 | "Energy Balance Cold Stream" |
---|
| 307 | Details.Q =-InletTube.F*(InletTube.h-OutletTube.h); |
---|
| 308 | |
---|
| 309 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
| 310 | |
---|
| 311 | case "tubes": |
---|
| 312 | |
---|
| 313 | "Energy Balance Hot Stream" |
---|
| 314 | Details.Q = InletTube.F*(InletTube.h-OutletTube.h); |
---|
| 315 | |
---|
| 316 | "Energy Balance Cold Stream" |
---|
| 317 | Details.Q =-InletShell.F*(InletShell.h-OutletShell.h); |
---|
| 318 | |
---|
| 319 | when InletTube.T < InletShell.T switchto "shell"; |
---|
| 320 | |
---|
| 321 | end |
---|
| 322 | |
---|
| 323 | "Flow Mass Inlet Tube Stream" |
---|
| 324 | Tubes.Properties.Inlet.Fw = sum(M*InletTube.z)*InletTube.F; |
---|
| 325 | |
---|
| 326 | "Flow Mass Outlet Tube Stream" |
---|
| 327 | Tubes.Properties.Outlet.Fw = sum(M*OutletTube.z)*OutletTube.F; |
---|
| 328 | |
---|
| 329 | "Flow Mass Inlet Shell Stream" |
---|
| 330 | Shell.Properties.Inlet.Fw = sum(M*InletShell.z)*InletShell.F; |
---|
| 331 | |
---|
| 332 | "Flow Mass Outlet Shell Stream" |
---|
| 333 | Shell.Properties.Outlet.Fw = sum(M*OutletShell.z)*OutletShell.F; |
---|
| 334 | |
---|
| 335 | "Molar Balance Shell Stream" |
---|
| 336 | OutletShell.F = InletShell.F; |
---|
| 337 | |
---|
| 338 | "Molar Balance Tube Stream" |
---|
| 339 | OutletTube.F = InletTube.F; |
---|
| 340 | |
---|
| 341 | "Shell Stream Molar Fraction Constraint" |
---|
| 342 | OutletShell.z=InletShell.z; |
---|
| 343 | |
---|
| 344 | "Tube Stream Molar Fraction Constraint" |
---|
| 345 | OutletTube.z=InletTube.z; |
---|
| 346 | |
---|
| 347 | "Jc Factor" |
---|
| 348 | Jc = 0.55+0.72*(1-2*Ftw); |
---|
| 349 | |
---|
| 350 | "Jl Factor" |
---|
| 351 | Jl = 0.44*(1-Rs)+(1-0.44*(1-Rs))*exp(-2.2*(Scd + Std)/Sm); |
---|
| 352 | |
---|
| 353 | "Total J Factor" |
---|
| 354 | Jtotal = Jc*Jl*Jb*Jr*Js; |
---|
| 355 | |
---|
| 356 | "Mass Velocity in Window Zone" |
---|
| 357 | mw = Shell.Properties.Inlet.Fw/sqrt(abs(Sm*abs((Pi*Shell.ShellID*Shell.ShellID*((Ods/360)-sin(Ods*Pi/180)/(2*Pi))/4)-(Tubes.NumberOfTubes*Pi*Tubes.TubeOD*Tubes.TubeOD*Ftw/4)))); |
---|
| 358 | |
---|
| 359 | switch TubeFlowRegime |
---|
| 360 | |
---|
| 361 | case "laminar": |
---|
| 362 | |
---|
| 363 | "Friction Factor for heat Transfer: Not Necessary in Laminar Correlation - Use any one equation that you want" |
---|
| 364 | Tubes.HeatTransfer.fi = 16/Tubes.HeatTransfer.Re; |
---|
| 365 | |
---|
| 366 | "Friction Factor for Pressure Drop in Laminar Flow" |
---|
[492] | 367 | Tubes.PressureDrop.FricFactor = 16/Tubes.HeatTransfer.Re; |
---|
[490] | 368 | |
---|
| 369 | switch LaminarCorrelation |
---|
| 370 | |
---|
| 371 | case "Hausen": |
---|
| 372 | |
---|
| 373 | "Nusselt Number in Laminar Flow - Hausen Equation" |
---|
| 374 | Tubes.HeatTransfer.Nu = 3.665 + ((0.19*((Tubes.TubeID/Tubes.TubeLength)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.8)/(1+0.117*((Tubes.TubeID/Tubes.TubeLength)*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR)^0.467)); |
---|
| 375 | |
---|
| 376 | case "Schlunder": |
---|
| 377 | |
---|
| 378 | "Nusselt Number in Laminar Flow - Schlunder Equation" |
---|
| 379 | Tubes.HeatTransfer.Nu = (49.027896+4.173281*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR*(Tubes.TubeID/Tubes.TubeLength))^(1/3); |
---|
| 380 | |
---|
| 381 | end |
---|
| 382 | |
---|
| 383 | when Tubes.HeatTransfer.Re > 2300 switchto "transition"; |
---|
| 384 | |
---|
| 385 | case "transition": |
---|
| 386 | |
---|
| 387 | "Friction Factor for heat Transfer : for use in Gnielinski Equation" |
---|
| 388 | Tubes.HeatTransfer.fi = 1/(0.79*ln(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
| 389 | |
---|
| 390 | "Friction Factor for Pressure Drop in Transition Flow" |
---|
[492] | 391 | Tubes.PressureDrop.FricFactor = 0.0122; |
---|
[490] | 392 | |
---|
| 393 | switch TransitionCorrelation |
---|
| 394 | |
---|
| 395 | case "Gnielinski": |
---|
| 396 | |
---|
| 397 | "Nusselt Number in Transition Flow - Gnielinski Equation" |
---|
| 398 | Tubes.HeatTransfer.Nu*(1+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*(Tubes.HeatTransfer.Re-1000)*Tubes.HeatTransfer.PR; |
---|
| 399 | |
---|
| 400 | case "ESDU": |
---|
| 401 | |
---|
| 402 | "Nusselt Number in Transition Flow - ESDU Equation" |
---|
| 403 | Tubes.HeatTransfer.Nu =1;#to be implemented |
---|
| 404 | |
---|
| 405 | end |
---|
| 406 | |
---|
| 407 | when Tubes.HeatTransfer.Re < 2300 switchto "laminar"; |
---|
| 408 | when Tubes.HeatTransfer.Re > 10000 switchto "turbulent"; |
---|
| 409 | |
---|
| 410 | case "turbulent": |
---|
| 411 | |
---|
| 412 | "Friction Factor for heat Transfer : for use in Petukhov Equation" |
---|
| 413 | Tubes.HeatTransfer.fi = 1/(1.82*log(Tubes.HeatTransfer.Re)-1.64)^2; |
---|
| 414 | |
---|
| 415 | "Friction Factor for Pressure Drop in Turbulent Flow" |
---|
[492] | 416 | Tubes.PressureDrop.FricFactor = 0.0035 + 0.264*Tubes.HeatTransfer.Re^(-0.42); |
---|
[490] | 417 | |
---|
| 418 | switch TurbulentCorrelation |
---|
| 419 | |
---|
| 420 | case "Petukhov": |
---|
| 421 | |
---|
| 422 | "Nusselt Number in Turbulent Flow - Petukhov Equation" |
---|
| 423 | Tubes.HeatTransfer.Nu*(1.07+(12.7*sqrt(0.125*Tubes.HeatTransfer.fi)*((Tubes.HeatTransfer.PR)^(2/3) -1))) = 0.125*Tubes.HeatTransfer.fi*Tubes.HeatTransfer.Re*Tubes.HeatTransfer.PR; |
---|
| 424 | |
---|
| 425 | case "SiederTate": |
---|
| 426 | |
---|
| 427 | "Nusselt Number in Transition Flow - Sieder Tate Equation" |
---|
| 428 | Tubes.HeatTransfer.Nu = 0.027*(Tubes.HeatTransfer.PR)^(1/3)*(Tubes.HeatTransfer.Re)^(4/5); |
---|
| 429 | |
---|
| 430 | end |
---|
| 431 | |
---|
| 432 | when Tubes.HeatTransfer.Re < 10000 switchto "transition"; |
---|
| 433 | |
---|
| 434 | end |
---|
| 435 | |
---|
| 436 | switch Pattern |
---|
| 437 | |
---|
| 438 | case "Triangle": |
---|
| 439 | |
---|
| 440 | "Shell Side Cross Flow Area" |
---|
| 441 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/Tubes.TubePitch)*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
| 442 | |
---|
| 443 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
| 444 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch); |
---|
| 445 | |
---|
| 446 | "Number of Effective Crossflow rows in Each Window" |
---|
| 447 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/(0.866*Tubes.TubePitch); |
---|
| 448 | |
---|
| 449 | "Variable for calculating Ji heat transfer correction Factor" |
---|
| 450 | a = 1.45/(1+0.14*Shell.HeatTransfer.Re^0.519); |
---|
| 451 | |
---|
| 452 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
| 453 | b=7/(1+0.14*Shell.HeatTransfer.Re^0.5); |
---|
| 454 | |
---|
| 455 | "Correction Factor for Pressure Drop" |
---|
| 456 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch)) ; |
---|
| 457 | |
---|
| 458 | "Ideal Shell Side Pressure Drop" |
---|
[492] | 459 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch))*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
[490] | 460 | |
---|
| 461 | "Shell Pressure End Zones" |
---|
[492] | 462 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.866*Tubes.TubePitch))))*Rb*Rspd; |
---|
[490] | 463 | |
---|
| 464 | switch ShellRange |
---|
| 465 | |
---|
| 466 | case "range1": |
---|
| 467 | |
---|
| 468 | "Ji Factor" |
---|
| 469 | Ji =1.40*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
| 470 | |
---|
| 471 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 472 | Shell.PressureDrop.FricFactor=48*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
[490] | 473 | |
---|
| 474 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
| 475 | |
---|
| 476 | case "range2": |
---|
| 477 | |
---|
| 478 | "Ji Factor" |
---|
[574] | 479 | Ji =1.36*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.657); |
---|
[490] | 480 | |
---|
| 481 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 482 | Shell.PressureDrop.FricFactor=45.10*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.973); |
---|
[490] | 483 | |
---|
| 484 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
| 485 | |
---|
| 486 | case "range3": |
---|
| 487 | |
---|
| 488 | "Ji Factor" |
---|
[574] | 489 | Ji =0.593*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.477); |
---|
[490] | 490 | |
---|
| 491 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 492 | Shell.PressureDrop.FricFactor=4.570*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.476); |
---|
[490] | 493 | |
---|
| 494 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
| 495 | |
---|
| 496 | case "range4": |
---|
| 497 | |
---|
| 498 | "Ji Factor" |
---|
[574] | 499 | Ji =0.321*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.388); |
---|
[490] | 500 | |
---|
| 501 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 502 | Shell.PressureDrop.FricFactor=0.486*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.152); |
---|
[490] | 503 | |
---|
| 504 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
| 505 | |
---|
| 506 | case "range5": |
---|
| 507 | |
---|
| 508 | "Ji Factor" |
---|
[574] | 509 | Ji =0.321*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.388); |
---|
[490] | 510 | |
---|
| 511 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 512 | Shell.PressureDrop.FricFactor=0.372*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.123); |
---|
[490] | 513 | |
---|
| 514 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
| 515 | |
---|
| 516 | end |
---|
| 517 | |
---|
| 518 | case "Rotated Square": |
---|
| 519 | |
---|
| 520 | "Shell Side Cross Flow Area" |
---|
| 521 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/(0.707*Tubes.TubePitch))*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
| 522 | |
---|
| 523 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
| 524 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch); |
---|
| 525 | |
---|
| 526 | "Number of Effective Crossflow rows in Each Window" |
---|
| 527 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/(0.707*Tubes.TubePitch); |
---|
| 528 | |
---|
| 529 | "Variable for calculating Ji heat transfer correction Factor" |
---|
| 530 | a = 1.930/(1+0.14*Shell.HeatTransfer.Re^0.500); |
---|
| 531 | |
---|
| 532 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
| 533 | b=6.59/(1+0.14*Shell.HeatTransfer.Re^0.52); |
---|
| 534 | |
---|
| 535 | "Correction Factor for Pressure Drop" |
---|
| 536 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch)) ; |
---|
| 537 | |
---|
| 538 | "Ideal Shell Side Pressure Drop" |
---|
[492] | 539 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch))*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
[490] | 540 | |
---|
| 541 | "Shell Pressure End Zones" |
---|
[492] | 542 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/(0.707*Tubes.TubePitch))))*Rb*Rspd; |
---|
[490] | 543 | |
---|
| 544 | switch ShellRange |
---|
| 545 | |
---|
| 546 | case "range1": |
---|
| 547 | |
---|
| 548 | "Ji Factor" |
---|
| 549 | Ji =1.550*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.667; |
---|
| 550 | |
---|
| 551 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 552 | Shell.PressureDrop.FricFactor=32*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
[490] | 553 | |
---|
| 554 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
| 555 | |
---|
| 556 | case "range2": |
---|
| 557 | |
---|
| 558 | "Ji Factor" |
---|
| 559 | Ji =0.498*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.656; |
---|
| 560 | |
---|
| 561 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 562 | Shell.PressureDrop.FricFactor=26.20*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.913); |
---|
[490] | 563 | |
---|
| 564 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
| 565 | |
---|
| 566 | case "range3": |
---|
| 567 | |
---|
| 568 | "Ji Factor" |
---|
| 569 | Ji =0.730*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^0.500; |
---|
| 570 | |
---|
| 571 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 572 | Shell.PressureDrop.FricFactor=3.50*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.476); |
---|
[490] | 573 | |
---|
| 574 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
| 575 | |
---|
| 576 | case "range4": |
---|
| 577 | |
---|
| 578 | "Ji Factor" |
---|
[574] | 579 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.396); |
---|
[490] | 580 | |
---|
| 581 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 582 | Shell.PressureDrop.FricFactor=0.333*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.136); |
---|
[490] | 583 | |
---|
| 584 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
| 585 | |
---|
| 586 | case "range5": |
---|
| 587 | |
---|
| 588 | "Ji Factor" |
---|
[574] | 589 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.396); |
---|
[490] | 590 | |
---|
| 591 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 592 | Shell.PressureDrop.FricFactor=0.303*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.126); |
---|
[490] | 593 | |
---|
| 594 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
| 595 | |
---|
| 596 | end |
---|
| 597 | |
---|
| 598 | case "Square": |
---|
| 599 | |
---|
| 600 | "Shell Side Cross Flow Area" |
---|
| 601 | Sm= Baffles.Central_Spacing*(Clearances.BundleToShell+((Shell.ShellID-Clearances.BundleToShell-Tubes.TubeOD)/Tubes.TubePitch)*(Tubes.TubePitch-Tubes.TubeOD)); |
---|
| 602 | |
---|
| 603 | "Number of Tube rows Crossed in one Crossflow Section" |
---|
| 604 | Nc = Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch; |
---|
| 605 | |
---|
| 606 | "Number of Effective Crossflow rows in Each Window" |
---|
| 607 | Ncw = 0.8*(Shell.ShellID*0.01*Baffles.BaffleCut-(Clearances.BundleToShell + Tubes.TubeOD)*0.5)/Tubes.TubePitch; |
---|
| 608 | |
---|
| 609 | "Variable for calculating Ji heat transfer correction Factor" |
---|
| 610 | a = 1.187/(1+0.14*Shell.HeatTransfer.Re^0.370); |
---|
| 611 | |
---|
| 612 | "Variable for calculating Shell Side Pressure Drop Friction Factor" |
---|
| 613 | b=6.30/(1+0.14*Shell.HeatTransfer.Re^0.38); |
---|
| 614 | |
---|
| 615 | "Correction Factor for Pressure Drop" |
---|
| 616 | Rss = Clearances.SealStrip/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch) ; |
---|
| 617 | |
---|
| 618 | "Ideal Shell Side Pressure Drop" |
---|
[492] | 619 | Shell.PressureDrop.Ideal= 2*Shell.PressureDrop.FricFactor*(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch)*(Shell.Properties.Inlet.Fw/Sm)^2/(Shell.Properties.Average.rho*Shell.HeatTransfer.Phi); |
---|
[490] | 620 | |
---|
| 621 | "Shell Pressure End Zones" |
---|
[492] | 622 | Shell.PressureDrop.EndZones = Shell.PressureDrop.Ideal*(1+ (Ncw/(Shell.ShellID*(1-0.02*Baffles.BaffleCut)/Tubes.TubePitch)))*Rb*Rspd; |
---|
[490] | 623 | |
---|
| 624 | switch ShellRange |
---|
| 625 | |
---|
| 626 | case "range1": |
---|
| 627 | |
---|
| 628 | "Ji Factor" |
---|
[574] | 629 | Ji =0.970*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.667); |
---|
[490] | 630 | |
---|
| 631 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 632 | Shell.PressureDrop.FricFactor=35*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-1); |
---|
[490] | 633 | |
---|
| 634 | when Shell.HeatTransfer.Re > 10 switchto "range2"; |
---|
| 635 | |
---|
| 636 | case "range2": |
---|
| 637 | |
---|
| 638 | "Ji Factor" |
---|
[574] | 639 | Ji =0.900*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.631); |
---|
[490] | 640 | |
---|
| 641 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 642 | Shell.PressureDrop.FricFactor=32.10*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.963); |
---|
[490] | 643 | |
---|
| 644 | when Shell.HeatTransfer.Re > 100 switchto "range3"; |
---|
| 645 | |
---|
| 646 | case "range3": |
---|
| 647 | |
---|
| 648 | "Ji Factor" |
---|
[574] | 649 | Ji =0.408*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.460); |
---|
[490] | 650 | |
---|
| 651 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 652 | Shell.PressureDrop.FricFactor=6.090*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.602); |
---|
[490] | 653 | |
---|
| 654 | when Shell.HeatTransfer.Re > 1000 switchto "range4"; |
---|
| 655 | |
---|
| 656 | case "range4": |
---|
| 657 | |
---|
| 658 | "Ji Factor" |
---|
[574] | 659 | Ji =0.107*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.266); |
---|
[490] | 660 | |
---|
| 661 | "Shell Side Pressure Drop Friction Factor" |
---|
[492] | 662 | Shell.PressureDrop.FricFactor=0.0815*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^0.022; |
---|
[490] | 663 | |
---|
| 664 | when Shell.HeatTransfer.Re > 10000 switchto "range5"; |
---|
| 665 | |
---|
| 666 | case "range5": |
---|
| 667 | |
---|
| 668 | "Ji Factor" |
---|
[574] | 669 | Ji =0.370*((1.33*Tubes.TubeOD/Tubes.TubePitch)^a)*Shell.HeatTransfer.Re^(-0.395); |
---|
[490] | 670 | |
---|
| 671 | "Shell Side Pressure Drop Friction Factor" |
---|
[574] | 672 | Shell.PressureDrop.FricFactor=0.391*((1.33*Tubes.TubeOD/Tubes.TubePitch)^b)*Shell.HeatTransfer.Re^(-0.148); |
---|
[490] | 673 | |
---|
| 674 | when Shell.HeatTransfer.Re < 10000 switchto "range4"; |
---|
| 675 | |
---|
| 676 | end |
---|
| 677 | |
---|
| 678 | end |
---|
| 679 | |
---|
| 680 | switch ShellFlowRegime |
---|
| 681 | |
---|
| 682 | case "deep laminar": |
---|
| 683 | |
---|
| 684 | "Jr Factor" |
---|
| 685 | Jr = (10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18; |
---|
| 686 | |
---|
| 687 | "Js Factor" |
---|
| 688 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.7 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.7)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
| 689 | |
---|
| 690 | "Jb Factor" |
---|
| 691 | Jb = exp(-1.35*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
| 692 | |
---|
| 693 | "ByPass Correction Factor for Pressure Drop" |
---|
| 694 | Rb = exp(-4.7*((Clearances.BundleToShell + Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
| 695 | |
---|
| 696 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
| 697 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing) + (Baffles.Central_Spacing/Baffles.Inlet_Spacing); |
---|
| 698 | |
---|
| 699 | "Shell Pressure Drop Baffle Window" |
---|
[492] | 700 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(Tubes.TubePitch-Tubes.TubeOD)+ Baffles.Central_Spacing/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
[490] | 701 | |
---|
| 702 | when Shell.HeatTransfer.Re > 20 switchto "laminar"; |
---|
| 703 | |
---|
| 704 | case "laminar": |
---|
| 705 | |
---|
| 706 | "Jr Factor" |
---|
| 707 | Jr = (10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18 + (0.25-0.0125*Shell.HeatTransfer.Re)*((10/((Nc +Ncw)*(Baffles.NumberOfBaffles+1)))^0.18 - 1); |
---|
| 708 | |
---|
| 709 | "Js Factor" |
---|
| 710 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.7 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.7)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
| 711 | |
---|
| 712 | "Jb Factor" |
---|
| 713 | Jb = exp(-1.35*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
| 714 | |
---|
| 715 | "ByPass Correction Factor for Pressure Drop" |
---|
| 716 | Rb = exp(-4.7*((Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
| 717 | |
---|
| 718 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
| 719 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing) + (Baffles.Central_Spacing/Baffles.Inlet_Spacing); |
---|
| 720 | |
---|
| 721 | "Shell Pressure Drop Baffle Window" |
---|
[492] | 722 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((26/Shell.Properties.Average.rho)*mw*Shell.Properties.Average.Mu*(Ncw/(Tubes.TubePitch-Tubes.TubeOD)+ Baffles.Central_Spacing/(Dw*Dw))+ 0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
[490] | 723 | |
---|
| 724 | when Shell.HeatTransfer.Re < 20 switchto "deep laminar"; |
---|
| 725 | when Shell.HeatTransfer.Re > 100 switchto "turbulent"; |
---|
| 726 | |
---|
| 727 | case "turbulent": |
---|
| 728 | |
---|
| 729 | "Jr Factor" |
---|
| 730 | Jr = 1; |
---|
| 731 | |
---|
| 732 | "Js Factor" |
---|
| 733 | Js = (Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing)^0.4 + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)^0.4)/(Baffles.NumberOfBaffles-1+(Baffles.Inlet_Spacing/Baffles.Central_Spacing) + (Baffles.Outlet_Spacing/Baffles.Central_Spacing)); |
---|
| 734 | |
---|
| 735 | "Jb Factor" |
---|
| 736 | Jb = exp(-1.25*( Clearances.BundleToShell+ Tubes.TubeOD)*Baffles.Central_Spacing/Sm*(1-(2*(Clearances.SealStrip/Nc)^(1/3)))); |
---|
| 737 | |
---|
| 738 | "ByPass Correction Factor for Pressure Drop" |
---|
| 739 | Rb = exp(-3.7*((Clearances.BundleToShell + Tubes.TubeOD)*Baffles.Central_Spacing/Sm)*(1-(2*Rss)^(1/3))); |
---|
| 740 | |
---|
| 741 | "Pressure Drop Correction Factor for Unequal Baffle Spacing" |
---|
| 742 | Rspd = (Baffles.Central_Spacing/Baffles.Outlet_Spacing)^1.8 + (Baffles.Central_Spacing/Baffles.Inlet_Spacing)^1.8; |
---|
| 743 | |
---|
| 744 | "Shell Pressure Drop Baffle Window" |
---|
[492] | 745 | Shell.PressureDrop.Window = Baffles.NumberOfBaffles*((2+0.6*Ncw)*0.5*mw*mw/Shell.Properties.Average.rho)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
[490] | 746 | |
---|
| 747 | when Shell.HeatTransfer.Re < 100 switchto "laminar"; |
---|
| 748 | |
---|
| 749 | end |
---|
| 750 | |
---|
| 751 | "Shell Pressure Drop Cross Flow" |
---|
[492] | 752 | Shell.PressureDrop.CrossFlow= Shell.PressureDrop.Ideal*Rb*(Baffles.NumberOfBaffles-1)*exp(-1.33*(1+Rs)*((Scd + Std)/Sm)^(-0.15*(1+Rs) + 0.8)); |
---|
[490] | 753 | |
---|
| 754 | "Shell Side Phi correction" |
---|
| 755 | Shell.HeatTransfer.Phi = (Shell.Properties.Average.Mu/Shell.Properties.Wall.Mu)^0.14; |
---|
| 756 | |
---|
| 757 | "Tube Side Phi correction" |
---|
| 758 | Tubes.HeatTransfer.Phi = (Tubes.Properties.Average.Mu/Tubes.Properties.Wall.Mu)^0.14; |
---|
| 759 | |
---|
| 760 | "Shell Side inlet Nozzle rho-V^2" |
---|
| 761 | Shell.PressureDrop.RVsquare_in = Shell.Properties.Inlet.rho*(Shell.PressureDrop.Vnozzle_in)^2; |
---|
| 762 | |
---|
| 763 | "Shell Side Outlet Nozzle rho-V^2" |
---|
| 764 | Shell.PressureDrop.RVsquare_out = Shell.Properties.Outlet.rho*(Shell.PressureDrop.Vnozzle_out)^2; |
---|
| 765 | |
---|
| 766 | "Tube Side Pressure Drop" |
---|
[492] | 767 | Tubes.PressureDrop.TubeFriction = 2*Tubes.PressureDrop.FricFactor*Tubes.TubeLength*Tubes.Properties.Average.rho*(Tubes.HeatTransfer.Vtube^2)*Tubes.Tubepasses/(Tubes.TubeID*Tubes.HeatTransfer.Phi); |
---|
[490] | 768 | |
---|
| 769 | "Pressure Drop Tube Side Inlet Nozzle" |
---|
[492] | 770 | Tubes.PressureDrop.InletNozzle = 0.5*Kinlet_Tube*Tubes.Properties.Inlet.rho*Tubes.PressureDrop.Vnozzle_in^2; |
---|
[490] | 771 | |
---|
| 772 | "Velocity Tube Side Inlet Nozzle" |
---|
| 773 | Tubes.PressureDrop.Vnozzle_in = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Inlet.rho*Ainozzle_Tube); |
---|
| 774 | |
---|
| 775 | "Pressure Drop Tube Side Outlet Nozzle" |
---|
[492] | 776 | Tubes.PressureDrop.OutletNozzle = 0.5*Koutlet_Tube*Tubes.Properties.Outlet.rho*Tubes.PressureDrop.Vnozzle_out^2; |
---|
[490] | 777 | |
---|
| 778 | "Velocity Tube Side Outlet Nozzle" |
---|
| 779 | Tubes.PressureDrop.Vnozzle_out = Tubes.Properties.Inlet.Fw/(Tubes.Properties.Outlet.rho*Aonozzle_Tube); |
---|
| 780 | |
---|
| 781 | "Shell Pressure Drop Inlet Nozzle" |
---|
[492] | 782 | Shell.PressureDrop.InletNozzle = (0.5*Shell.Properties.Inlet.Fw^2/Shell.Properties.Inlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
[490] | 783 | |
---|
| 784 | "Velocity Shell Side Inlet Nozzle" |
---|
| 785 | Shell.PressureDrop.Vnozzle_in = Shell.Properties.Inlet.Fw/(Shell.Properties.Inlet.rho*Ainozzle_Shell); |
---|
| 786 | |
---|
| 787 | "Shell Pressure Drop Outlet Nozzle" |
---|
[492] | 788 | Shell.PressureDrop.OutletNozzle = (0.5*Shell.Properties.Outlet.Fw^2/Shell.Properties.Outlet.rho)*((1/Ainozzle_Shell^2)+(1/Aeinozzle_Shell^2)); |
---|
[490] | 789 | |
---|
| 790 | "Velocity Shell Side Outlet Nozzle" |
---|
| 791 | Shell.PressureDrop.Vnozzle_out = Shell.Properties.Outlet.Fw/(Shell.Properties.Outlet.rho*Aonozzle_Shell); |
---|
| 792 | |
---|
| 793 | "Pressure Drop Shell Stream" |
---|
[492] | 794 | OutletShell.P = InletShell.P - Shell.PressureDrop.Total; |
---|
[490] | 795 | |
---|
| 796 | "Pressure Drop Tube Stream" |
---|
[492] | 797 | OutletTube.P = InletTube.P - Tubes.PressureDrop.Total; |
---|
[490] | 798 | |
---|
| 799 | "Shell Wall Temperature" |
---|
| 800 | Shell.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
| 801 | |
---|
| 802 | "Tube Wall Temperature" |
---|
| 803 | Tubes.Properties.Wall.Twall = (Shell.Properties.Average.T+Tubes.Properties.Average.T)/2; |
---|
| 804 | |
---|
| 805 | "Tube Side Velocity" |
---|
| 806 | Tubes.HeatTransfer.Vtube = Tubes.Properties.Inlet.Fw*Tubes.Tubepasses/((Pi*Tubes.TubeID*Tubes.TubeID/4)*Tubes.Properties.Average.rho*Tubes.NumberOfTubes); |
---|
| 807 | |
---|
| 808 | "Tube Side Reynolds Number" |
---|
| 809 | Tubes.HeatTransfer.Re = (Tubes.Properties.Average.rho*Tubes.HeatTransfer.Vtube*Tubes.TubeID)/Tubes.Properties.Average.Mu; |
---|
| 810 | |
---|
| 811 | "Tube Side Prandtl Number" |
---|
| 812 | Tubes.HeatTransfer.PR = ((Tubes.Properties.Average.Cp/Tubes.Properties.Average.Mw)*Tubes.Properties.Average.Mu)/Tubes.Properties.Average.K; |
---|
| 813 | |
---|
| 814 | "Tube Side Film Coefficient" |
---|
| 815 | Tubes.HeatTransfer.htube= (Tubes.HeatTransfer.Nu*Tubes.Properties.Average.K/Tubes.TubeID)*Tubes.HeatTransfer.Phi; |
---|
| 816 | |
---|
| 817 | "Shell Side Prandtl Number" |
---|
| 818 | Shell.HeatTransfer.PR = ((Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*Shell.Properties.Average.Mu)/Shell.Properties.Average.K; |
---|
| 819 | |
---|
| 820 | "Overall Heat Transfer Coefficient Dirty" |
---|
| 821 | Details.Ud=1/(Tubes.TubeOD/(Tubes.HeatTransfer.htube*Tubes.TubeID)+Shell.Fouling+Tubes.Fouling*(Tubes.TubeOD/Tubes.TubeID)+(Tubes.TubeOD*ln(Tubes.TubeOD/Tubes.TubeID)/(2*Tubes.Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
| 822 | |
---|
| 823 | "Overall Heat Transfer Coefficient Clean" |
---|
| 824 | Details.Uc=1/(Tubes.TubeOD/(Tubes.HeatTransfer.htube*Tubes.TubeID)+(Tubes.TubeOD*ln(Tubes.TubeOD/Tubes.TubeID)/(2*Tubes.Kwall))+(1/(Shell.HeatTransfer.hshell))); |
---|
| 825 | |
---|
| 826 | "Exchange Surface Area" |
---|
| 827 | Details.A=Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength; |
---|
| 828 | |
---|
| 829 | "Baffle Spacing Constraint" |
---|
| 830 | Tubes.TubeLength = Baffles.Inlet_Spacing+Baffles.Outlet_Spacing+Baffles.Central_Spacing*(Baffles.NumberOfBaffles-1); |
---|
| 831 | |
---|
| 832 | "Shell Side Reynolds Number" |
---|
| 833 | Shell.HeatTransfer.Re = (Tubes.TubeOD*Shell.Properties.Inlet.Fw/Sm)/Shell.Properties.Average.Mu; |
---|
| 834 | |
---|
| 835 | "Shell Heat Transfer Coefficient" |
---|
| 836 | Shell.HeatTransfer.hshell = Ji*(Shell.Properties.Average.Cp/Shell.Properties.Average.Mw)*(Shell.Properties.Inlet.Fw/Sm)*(Shell.HeatTransfer.PR^(-2/3))*Jtotal*Shell.HeatTransfer.Phi; |
---|
| 837 | |
---|
| 838 | end |
---|
| 839 | |
---|
| 840 | Model ShellandTubes_NTU as ShellandTubesBasic |
---|
| 841 | |
---|
| 842 | ATTRIBUTES |
---|
| 843 | Pallete = true; |
---|
| 844 | Icon = "icon/ShellandTubes_NTU"; |
---|
| 845 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
| 846 | Info = |
---|
| 847 | "to be documented"; |
---|
| 848 | |
---|
| 849 | VARIABLES |
---|
| 850 | |
---|
| 851 | Method as NTU_Basic (Brief="NTU Method"); |
---|
| 852 | |
---|
| 853 | EQUATIONS |
---|
| 854 | |
---|
| 855 | "Number of Units Transference" |
---|
| 856 | Method.NTU*Method.Cmin = Details.Ud*Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength; |
---|
| 857 | |
---|
| 858 | "Minimum Heat Capacity" |
---|
| 859 | Method.Cmin = min([Method.Ch,Method.Cc]); |
---|
| 860 | |
---|
| 861 | "Maximum Heat Capacity" |
---|
| 862 | Method.Cmax = max([Method.Ch,Method.Cc]); |
---|
| 863 | |
---|
| 864 | "Thermal Capacity Ratio" |
---|
| 865 | Method.Cr = Method.Cmin/Method.Cmax; |
---|
| 866 | |
---|
| 867 | switch HotSide |
---|
| 868 | |
---|
| 869 | case "shell": |
---|
| 870 | |
---|
| 871 | "Duty" |
---|
| 872 | Details.Q = Method.Eft*Method.Cmin*(InletShell.T-InletTube.T); |
---|
| 873 | |
---|
| 874 | "Hot Stream Heat Capacity" |
---|
| 875 | Method.Ch = InletShell.F*Shell.Properties.Average.Cp; |
---|
| 876 | |
---|
| 877 | "Cold Stream Heat Capacity" |
---|
| 878 | Method.Cc = InletTube.F*Tubes.Properties.Average.Cp; |
---|
| 879 | |
---|
| 880 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
| 881 | |
---|
| 882 | case "tubes": |
---|
| 883 | |
---|
| 884 | "Duty" |
---|
| 885 | Details.Q = Method.Eft*Method.Cmin*(InletTube.T-InletShell.T); |
---|
| 886 | |
---|
| 887 | "Hot Stream Heat Capacity" |
---|
| 888 | Method.Cc = InletShell.F*Shell.Properties.Average.Cp; |
---|
| 889 | |
---|
| 890 | "Cold Stream Heat Capacity" |
---|
| 891 | Method.Ch = InletTube.F*Tubes.Properties.Average.Cp; |
---|
| 892 | |
---|
| 893 | when InletTube.T < InletShell.T switchto "shell"; |
---|
| 894 | |
---|
| 895 | end |
---|
| 896 | |
---|
| 897 | switch ShellType |
---|
| 898 | |
---|
| 899 | case "Fshell": |
---|
| 900 | |
---|
| 901 | "Effectiveness Correction for 2 pass shell side" |
---|
[574] | 902 | Method.Eft1 = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^(-1); |
---|
[490] | 903 | |
---|
| 904 | "TEMA F Shell Effectiveness" |
---|
[574] | 905 | Method.Eft = ( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 -1 )*( ((1-Method.Eft1*Method.Cr)/(1-Method.Eft1))^2 - Method.Cr )^(-1); |
---|
[490] | 906 | |
---|
| 907 | case "Eshell": |
---|
| 908 | |
---|
| 909 | "TEMA E Shell Effectiveness" |
---|
[574] | 910 | Method.Eft = 2*(1+Method.Cr+sqrt(1+Method.Cr^2)*((1+exp(-Method.NTU*sqrt(1+Method.Cr^2)))/(1-exp(-Method.NTU*sqrt(1+Method.Cr^2)))) )^(-1); |
---|
[490] | 911 | # Method.Eft = 1; |
---|
| 912 | |
---|
| 913 | "Variable not in use when 1 Pass Shell Side" |
---|
| 914 | Method.Eft1 = 1; |
---|
| 915 | |
---|
| 916 | end |
---|
| 917 | |
---|
| 918 | end |
---|
| 919 | |
---|
| 920 | Model ShellandTubes_LMTD as ShellandTubesBasic |
---|
| 921 | |
---|
| 922 | ATTRIBUTES |
---|
| 923 | Pallete = true; |
---|
| 924 | Icon = "icon/ShellandTubes_LMTD"; |
---|
| 925 | Brief = "Shell and Tubes Heat Exchangers"; |
---|
| 926 | Info = |
---|
| 927 | "to be documented."; |
---|
| 928 | |
---|
| 929 | PARAMETERS |
---|
| 930 | |
---|
| 931 | LMTDcorrection as Switcher (Brief="LMTD Correction Factor Model",Valid=["Bowmann","Fakeri"],Default="Bowmann"); |
---|
| 932 | |
---|
| 933 | VARIABLES |
---|
| 934 | |
---|
| 935 | Method as LMTD_Basic; |
---|
| 936 | R as positive (Brief=" Capacity Ratio for LMTD Correction Fator",Lower=1e-6); |
---|
| 937 | P as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator ",Lower=1e-6); |
---|
| 938 | Pc as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side",Lower=1e-6); |
---|
| 939 | Rho as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
| 940 | Phi as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation",Lower=1e-6); |
---|
| 941 | lambdaN as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equation when 2 Pass Shell Side",Lower=1e-6); |
---|
| 942 | lambda1 as positive (Brief="Non - Dimensional Variable for LMTD Correction Fator in Fakeri Equationwhen 2 Pass Shell Side",Lower=1e-6); |
---|
| 943 | |
---|
| 944 | EQUATIONS |
---|
| 945 | |
---|
| 946 | "Exchange Surface Area" |
---|
| 947 | Details.Q = Details.Ud*Pi*Tubes.TubeOD*Tubes.NumberOfTubes*Tubes.TubeLength*Method.LMTD*Method.Fc; |
---|
| 948 | |
---|
| 949 | switch HotSide |
---|
| 950 | |
---|
| 951 | case "shell": |
---|
| 952 | |
---|
| 953 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
| 954 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
| 955 | |
---|
| 956 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
| 957 | R*(OutletTube.T - InletTube.T ) = (InletShell.T-OutletShell.T); |
---|
| 958 | |
---|
| 959 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
| 960 | P*(InletShell.T- InletTube.T)= (OutletTube.T-InletTube.T); |
---|
| 961 | |
---|
| 962 | "Temperature Difference at Inlet" |
---|
| 963 | Method.DT0 = InletShell.T - OutletTube.T; |
---|
| 964 | |
---|
| 965 | "Temperature Difference at Outlet" |
---|
| 966 | Method.DTL = OutletShell.T - InletTube.T; |
---|
| 967 | |
---|
| 968 | when InletTube.T > InletShell.T switchto "tubes"; |
---|
| 969 | |
---|
| 970 | case "tubes": |
---|
| 971 | |
---|
| 972 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
| 973 | Phi*(2*((InletShell.T+ OutletShell.T)-(InletTube.T+ OutletTube.T))) = (sqrt(((InletShell.T- OutletShell.T)*(InletShell.T- OutletShell.T))+((OutletTube.T - InletTube.T)*(OutletTube.T - InletTube.T)))); |
---|
| 974 | |
---|
| 975 | "R: Capacity Ratio for LMTD Correction Fator" |
---|
| 976 | R*(OutletShell.T - InletShell.T ) = (InletTube.T-OutletTube.T); |
---|
| 977 | |
---|
| 978 | "P: Non - Dimensional Variable for LMTD Correction Fator" |
---|
| 979 | P*(InletTube.T- InletShell.T)= (OutletShell.T-InletShell.T); |
---|
| 980 | |
---|
| 981 | "Temperature Difference at Inlet" |
---|
| 982 | Method.DT0 = InletTube.T - OutletShell.T; |
---|
| 983 | |
---|
| 984 | "Temperature Difference at Outlet" |
---|
| 985 | Method.DTL = OutletTube.T - InletShell.T; |
---|
| 986 | |
---|
| 987 | |
---|
| 988 | when InletTube.T < InletShell.T switchto "shell"; |
---|
| 989 | |
---|
| 990 | end |
---|
| 991 | |
---|
| 992 | switch ShellType |
---|
| 993 | |
---|
| 994 | case "Fshell": |
---|
| 995 | |
---|
| 996 | switch LMTDcorrection |
---|
| 997 | |
---|
| 998 | case "Bowmann": |
---|
| 999 | |
---|
| 1000 | " Variable not in use with Bowmann equation" |
---|
| 1001 | lambdaN =1; |
---|
| 1002 | |
---|
| 1003 | " Variable not in use with Bowmann equation" |
---|
| 1004 | lambda1 =1; |
---|
| 1005 | |
---|
| 1006 | #" Variable not in use with Bowmann equation" |
---|
| 1007 | # Phi = 1; |
---|
| 1008 | |
---|
| 1009 | " Variable not in use with Bowmann equation" |
---|
| 1010 | Rho =1; |
---|
| 1011 | |
---|
| 1012 | if R equal 1 |
---|
| 1013 | |
---|
| 1014 | then |
---|
| 1015 | |
---|
| 1016 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1017 | Pc*(2-P)= P; |
---|
| 1018 | |
---|
| 1019 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1020 | Method.Fc= (sqrt(2)*Pc)/((1-Pc)*ln( abs( ( 2-Pc*0.585786)/( 2-Pc*3.414214)))); |
---|
| 1021 | |
---|
| 1022 | else |
---|
| 1023 | |
---|
| 1024 | "Non Dimensional Variable for LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1025 | Pc = (sqrt(abs(( 1-P*R)/(1-P)))-1)/(sqrt(abs(( 1-P*R)/(1-P)))-R); |
---|
| 1026 | |
---|
| 1027 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1028 | Method.Fc = sqrt(R*R+1)*ln(abs((1-Pc*R)/(1-Pc)))/((1-R)*ln( abs( ( 2-Pc*(R+1-sqrt(R*R+1)))/ ( 2-Pc*(R + 1 + sqrt(R*R+1)))))); |
---|
| 1029 | |
---|
| 1030 | end |
---|
| 1031 | |
---|
| 1032 | case "Fakeri": |
---|
| 1033 | |
---|
| 1034 | " Variable not in use with Fakeri equation" |
---|
| 1035 | Pc = P; |
---|
| 1036 | |
---|
| 1037 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
| 1038 | Rho*(1-P*R) = (1-P); |
---|
| 1039 | |
---|
| 1040 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
| 1041 | # Phi = (sqrt(((Inlet.Hot.T - Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T + Outlet.Hot.T)-( Inlet.Cold.T + Outlet.Cold.T))); |
---|
| 1042 | |
---|
| 1043 | if Rho equal 1 |
---|
| 1044 | |
---|
| 1045 | then |
---|
| 1046 | |
---|
| 1047 | " Variable not in use when Rho = 1" |
---|
| 1048 | lambdaN = 1; |
---|
| 1049 | |
---|
| 1050 | " Variable not in use when Rho = 1" |
---|
| 1051 | lambda1 = 1; |
---|
| 1052 | |
---|
| 1053 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1054 | Method.Fc = (2*Phi )/(ln(abs((1+Phi )/(1-Phi )))); |
---|
| 1055 | |
---|
| 1056 | else |
---|
| 1057 | |
---|
| 1058 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
| 1059 | lambdaN = (1/ln(sqrt(abs(Rho))))*((2*sqrt(abs(Rho))-2)/(sqrt(abs(Rho))+1)); |
---|
| 1060 | |
---|
| 1061 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
| 1062 | lambda1 = (1/ln(abs(Rho)))*((2*Rho-2)/(Rho+1)); |
---|
| 1063 | |
---|
| 1064 | "LMTD Correction Fator when 2 Pass Shell Side" |
---|
| 1065 | Method.Fc = ((2*Phi *(lambdaN/lambda1))/(ln(abs((1+Phi *(lambdaN/lambda1))/(1-Phi *(lambdaN/lambda1))))))*(1/lambdaN); |
---|
| 1066 | |
---|
| 1067 | end |
---|
| 1068 | |
---|
| 1069 | |
---|
| 1070 | end |
---|
| 1071 | |
---|
| 1072 | case "Eshell": |
---|
| 1073 | |
---|
| 1074 | " Variable not in use when 1 Pass Shell Side" |
---|
| 1075 | lambdaN =1; |
---|
| 1076 | |
---|
| 1077 | " Variable not in use when 1 Pass Shell Side" |
---|
| 1078 | lambda1 =1; |
---|
| 1079 | |
---|
| 1080 | " Variable not in use when 1 Pass Shell Side" |
---|
| 1081 | Pc = P; |
---|
| 1082 | |
---|
| 1083 | switch LMTDcorrection |
---|
| 1084 | |
---|
| 1085 | case "Bowmann": |
---|
| 1086 | |
---|
| 1087 | #" Variable not in use with Bowmann equation" |
---|
| 1088 | # Phi = 1; |
---|
| 1089 | |
---|
| 1090 | " Variable not in use with Bowmann equation" |
---|
| 1091 | Rho = 1; |
---|
| 1092 | |
---|
| 1093 | |
---|
| 1094 | if R equal 1 |
---|
| 1095 | |
---|
| 1096 | then |
---|
| 1097 | |
---|
| 1098 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 1099 | Method.Fc = (sqrt(2)*P)/((1-P)*ln( abs( ( 2-P*0.585786)/( 2-P*3.414214)))); |
---|
| 1100 | |
---|
| 1101 | else |
---|
| 1102 | |
---|
| 1103 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 1104 | Method.Fc = sqrt(R*R+1)*ln(abs((1-P*R)/(1-P)))/((1-R)*ln( abs( ( 2-P*(R+1-sqrt(R*R+1)))/ ( 2-P*(R + 1 + sqrt(R*R+1)))))); |
---|
| 1105 | |
---|
| 1106 | end |
---|
| 1107 | |
---|
| 1108 | case "Fakeri": |
---|
| 1109 | |
---|
| 1110 | #"Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation " |
---|
| 1111 | # Phi = (sqrt(((Inlet.Hot.T- Outlet.Hot.T)*(Inlet.Hot.T- Outlet.Hot.T))+((Outlet.Cold.T - Inlet.Cold.T)*(Outlet.Cold.T - Inlet.Cold.T))))/(2*((Inlet.Hot.T+ Outlet.Hot.T)-(Inlet.Cold.T+ Outlet.Cold.T))); |
---|
| 1112 | |
---|
| 1113 | "Non Dimensional Variable for LMTD Correction Fator in Fakeri Equation" |
---|
| 1114 | Rho*(1-P*R) = (1-P); |
---|
| 1115 | |
---|
| 1116 | if Rho equal 1 |
---|
| 1117 | |
---|
| 1118 | then |
---|
| 1119 | |
---|
| 1120 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 1121 | Method.Fc = (4*Phi)/(ln(abs((1+2*Phi)/(1-2*Phi)))); |
---|
| 1122 | |
---|
| 1123 | else |
---|
| 1124 | |
---|
| 1125 | "LMTD Correction Fator when 1 Pass Shell Side" |
---|
| 1126 | Method.Fc = (2*Phi*(Rho+1)*ln(abs(Rho)))/( ln(abs((1+2*Phi)/(1-2*Phi)))*(Rho-1)); |
---|
| 1127 | |
---|
| 1128 | end |
---|
| 1129 | |
---|
| 1130 | end |
---|
| 1131 | |
---|
| 1132 | |
---|
| 1133 | end |
---|
| 1134 | |
---|
| 1135 | end |
---|
| 1136 | |
---|