[438] | 1 | #*------------------------------------------------------------------- |
---|
| 2 | * EMSO Model Library (EML) Copyright (C) 2004 - 2007 ALSOC. |
---|
| 3 | * |
---|
| 4 | * This LIBRARY is free software; you can distribute it and/or modify |
---|
| 5 | * it under the therms of the ALSOC FREE LICENSE as available at |
---|
| 6 | * http://www.enq.ufrgs.br/alsoc. |
---|
| 7 | * |
---|
| 8 | * EMSO Copyright (C) 2004 - 2007 ALSOC, original code |
---|
| 9 | * from http://www.rps.eng.br Copyright (C) 2002-2004. |
---|
| 10 | * All rights reserved. |
---|
| 11 | * |
---|
| 12 | * EMSO is distributed under the therms of the ALSOC LICENSE as |
---|
| 13 | * available at http://www.enq.ufrgs.br/alsoc. |
---|
| 14 | *-------------------------------------------------------------------- |
---|
| 15 | * Author: Gerson Balbueno Bicca |
---|
| 16 | * $Id: DoublePipeIncr.mso $ |
---|
| 17 | *------------------------------------------------------------------*# |
---|
| 18 | |
---|
| 19 | using "streams"; |
---|
| 20 | |
---|
| 21 | Model Properties_Average |
---|
| 22 | |
---|
| 23 | ATTRIBUTES |
---|
| 24 | Pallete = false; |
---|
| 25 | Brief = "Average incremental physical properties of the streams."; |
---|
| 26 | Info = |
---|
| 27 | "to be documented."; |
---|
| 28 | |
---|
| 29 | PARAMETERS |
---|
| 30 | |
---|
| 31 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
| 32 | |
---|
| 33 | VARIABLES |
---|
| 34 | Mw as molweight (Brief="Average Mol Weight",Default=75, Lower=1, Upper=1e8); |
---|
| 35 | T(N) as temperature (Brief="Average Incremental Temperature",Lower=50); |
---|
| 36 | P(N) as pressure (Brief="Average Incremental Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
| 37 | rho(N) as dens_mass (Brief="Stream Incremental Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
| 38 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Lower=0.0001, Symbol = "\mu"); |
---|
| 39 | Cp(N) as cp_mol (Brief="Stream Incremental Molar Heat Capacity", Upper=1e10); |
---|
| 40 | K(N) as conductivity (Brief="Stream Incremental Thermal Conductivity", Default=1.0, Lower=1e-5, Upper=500); |
---|
| 41 | |
---|
| 42 | end |
---|
| 43 | |
---|
| 44 | Model Properties_In_Out |
---|
| 45 | |
---|
| 46 | ATTRIBUTES |
---|
| 47 | Pallete = false; |
---|
| 48 | Brief = "Inlet and outlet physical properties of the streams."; |
---|
| 49 | Info = |
---|
| 50 | "to be documented."; |
---|
| 51 | |
---|
| 52 | VARIABLES |
---|
| 53 | Fw as flow_mass (Brief="Stream Mass Flow"); |
---|
| 54 | rho as dens_mass (Brief="Stream Density" ,Default=1000, Lower=1e-3, Upper=5e5, Symbol = "\rho"); |
---|
| 55 | end |
---|
| 56 | |
---|
| 57 | Model Properties_Wall |
---|
| 58 | |
---|
| 59 | ATTRIBUTES |
---|
| 60 | Pallete = false; |
---|
| 61 | Brief = "Incremental Physical properties of the streams at wall temperature."; |
---|
| 62 | Info = |
---|
| 63 | "to be documented."; |
---|
| 64 | |
---|
| 65 | PARAMETERS |
---|
| 66 | |
---|
| 67 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
| 68 | |
---|
| 69 | VARIABLES |
---|
| 70 | Mu(N) as viscosity (Brief="Stream Incremental Viscosity",Default=1, Lower=1e-5, Upper=1e5, Symbol = "\mu"); |
---|
| 71 | Twall(N) as temperature (Brief="Incremental Wall Temperature",Lower=50); |
---|
| 72 | |
---|
| 73 | end |
---|
| 74 | |
---|
| 75 | Model Physical_Properties |
---|
| 76 | |
---|
| 77 | ATTRIBUTES |
---|
| 78 | Pallete = false; |
---|
| 79 | Brief = "to be documented"; |
---|
| 80 | Info = |
---|
| 81 | "to be documented"; |
---|
| 82 | |
---|
| 83 | VARIABLES |
---|
| 84 | Inlet as Properties_In_Out (Brief="Properties at Inlet Stream", Symbol = "^{in}"); |
---|
| 85 | Average as Properties_Average (Brief="Properties at Average Temperature", Symbol = "^{avg}"); |
---|
| 86 | Outlet as Properties_In_Out (Brief="Properties at Outlet Stream", Symbol = "^{out}"); |
---|
| 87 | Wall as Properties_Wall (Brief="Properties at Wall Temperature", Symbol = "^{wall}"); |
---|
| 88 | |
---|
| 89 | end |
---|
| 90 | |
---|
| 91 | Model Details_Main |
---|
| 92 | |
---|
| 93 | ATTRIBUTES |
---|
| 94 | Pallete = false; |
---|
| 95 | Brief = "to be documented"; |
---|
| 96 | Info = |
---|
| 97 | "to be documented"; |
---|
| 98 | |
---|
| 99 | PARAMETERS |
---|
| 100 | |
---|
| 101 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
| 102 | |
---|
| 103 | VARIABLES |
---|
| 104 | A as area (Brief="Total Exchange Surface Area"); |
---|
| 105 | Q(N) as power (Brief="Incremental Duty", Default=7000, Lower=1e-6, Upper=1e10); |
---|
| 106 | Qtotal as power (Brief="Total Duty", Default=7000, Lower=1e-6, Upper=1e10); |
---|
| 107 | Uc(N) as heat_trans_coeff (Brief="Incremental Overall Heat Transfer Coefficient Clean",Default=1,Lower=1e-6,Upper=1e10); |
---|
| 108 | Ud(N) as heat_trans_coeff (Brief="Incremental Overall Heat Transfer Coefficient Dirty",Default=1,Lower=1e-6,Upper=1e10); |
---|
| 109 | |
---|
| 110 | end |
---|
| 111 | |
---|
| 112 | Model DoublePipe_HeatTransfer |
---|
| 113 | |
---|
| 114 | ATTRIBUTES |
---|
| 115 | Pallete = false; |
---|
| 116 | Brief = "to be documented"; |
---|
| 117 | Info = |
---|
| 118 | "to be documented"; |
---|
| 119 | |
---|
| 120 | PARAMETERS |
---|
| 121 | |
---|
| 122 | As as area (Brief="Cross Sectional Area for Flow",Default=0.05,Lower=1e-8); |
---|
| 123 | Dh as length (Brief="Hydraulic Diameter of Pipe for Heat Transfer",Lower=1e-8); |
---|
| 124 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
| 125 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
| 126 | |
---|
| 127 | VARIABLES |
---|
| 128 | |
---|
| 129 | Tlocal(Npoints) as temperature (Brief="Incremental Local Temperature",Lower=50); |
---|
| 130 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
| 131 | hcoeff(N) as heat_trans_coeff (Brief="Incremental Film Coefficient",Default=1,Lower=1e-12, Upper=1e6, DisplayUnit = 'W/m^2/K'); |
---|
| 132 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
| 133 | Nu(N) as positive (Brief="Incremental Nusselt Number",Default=0.5,Lower=1e-8); |
---|
| 134 | PR(N) as positive (Brief="Incremental Prandtl Number",Default=0.5,Lower=1e-8); |
---|
| 135 | Phi(N) as positive (Brief="Incremental Phi Correction",Default=1,Lower=1e-3); |
---|
| 136 | Vmean(N) as velocity (Brief="Incremental Tube Velocity",Lower=1e-8); |
---|
| 137 | Enth(Npoints) as enth_mol (Brief="Incremental Stream Enthalpy"); |
---|
| 138 | |
---|
| 139 | end |
---|
| 140 | |
---|
| 141 | Model DoublePipe_PressureDrop |
---|
| 142 | |
---|
| 143 | ATTRIBUTES |
---|
| 144 | Pallete = false; |
---|
| 145 | Brief = "to be documented"; |
---|
| 146 | Info = |
---|
| 147 | "to be documented"; |
---|
| 148 | |
---|
| 149 | PARAMETERS |
---|
| 150 | |
---|
| 151 | Dh as length (Brief="Hydraulic Diameter of Pipe for Pressure Drop",Lower=1e-6); |
---|
| 152 | outer N as Integer (Brief="Number of zones", Default = 2); |
---|
| 153 | outer Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
| 154 | |
---|
| 155 | VARIABLES |
---|
| 156 | |
---|
| 157 | Plocal(Npoints) as pressure (Brief="Incremental Local Pressure",Default=1, Lower=1e-10, Upper=2e4, DisplayUnit='kPa'); |
---|
| 158 | Pdrop as press_delta (Brief="Total Pressure Drop",Default=0.01, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P"); |
---|
| 159 | Pd_fric(Npoints) as press_delta (Brief="Incremental Pressure Drop for friction",Default=0.01, Lower=0,DisplayUnit='kPa', Symbol ="\Delta P_{fric}"); |
---|
| 160 | fi(N) as fricfactor (Brief="Incremental Friction Factor", Default=0.05, Lower=1e-10, Upper=2000); |
---|
| 161 | Re(N) as positive (Brief="Incremental Reynolds Number",Default=100,Lower=1); |
---|
| 162 | Pdnozzle_in as press_delta (Brief="Inlet Nozzle Pressure Drop",Default=0.01, Lower=0,DisplayUnit='kPa'); |
---|
| 163 | Pdnozzle_out as press_delta (Brief="Outlet Nozzle Pressure Drop",Default=0.01, Lower=0,DisplayUnit='kPa'); |
---|
| 164 | Vnozzle_in as velocity (Brief="Inlet Nozzle Velocity",Default=1, Upper=1e5, Lower=0); |
---|
| 165 | Vnozzle_out as velocity (Brief="Outlet Nozzle Velocity",Default=1, Upper=1e5, Lower=0); |
---|
| 166 | RVsquare_in as positive (Brief = "Inlet Nozzle rho-V^2", Default=1, Upper=1e6, Unit = 'kg/s^2/m'); |
---|
| 167 | RVsquare_out as positive (Brief = "Outlet Nozzle rho-V^2", Default=1, Upper=1e6, Unit = 'kg/s^2/m'); |
---|
| 168 | end |
---|
| 169 | |
---|
| 170 | Model Main_DoublePipe |
---|
| 171 | |
---|
| 172 | ATTRIBUTES |
---|
| 173 | Pallete = false; |
---|
| 174 | Brief = "to be documented"; |
---|
| 175 | Info = |
---|
| 176 | "to be documented"; |
---|
| 177 | |
---|
| 178 | VARIABLES |
---|
| 179 | |
---|
| 180 | HeatTransfer as DoublePipe_HeatTransfer (Brief="Double Pipe Heat Transfer"); |
---|
| 181 | PressureDrop as DoublePipe_PressureDrop (Brief="Double Pipe Pressure Drop"); |
---|
| 182 | Properties as Physical_Properties (Brief="Double Pipe Properties"); |
---|
| 183 | |
---|
| 184 | end |
---|
| 185 | |
---|
| 186 | Model DoublePipeIncr |
---|
| 187 | |
---|
| 188 | ATTRIBUTES |
---|
| 189 | Pallete = true; |
---|
| 190 | Icon = "icon/DoublePipe"; |
---|
| 191 | Brief = "Incremental Double Pipe Heat Exchanger. "; |
---|
| 192 | Info = |
---|
| 193 | "Incremental approach for a single double pipe heat exchanger. "; |
---|
| 194 | |
---|
| 195 | PARAMETERS |
---|
| 196 | |
---|
| 197 | outer PP as Plugin (Brief="External Physical Properties", Type="PP"); |
---|
| 198 | outer NComp as Integer (Brief="Number of Components"); |
---|
| 199 | N as Integer (Brief="Number of zones", Default = 2); |
---|
| 200 | Npoints as Integer (Brief="Number of incremental points", Default = 3); |
---|
[482] | 201 | |
---|
| 202 | CalculationApproach as Switcher (Brief="Options for convergence Calculations ",Valid=["Simplified","Full"],Default="Full"); |
---|
| 203 | Qestimated as power (Brief="Estimated Duty", Default=70, Lower=1e-6, Upper=1e10); |
---|
[438] | 204 | |
---|
| 205 | M(NComp) as molweight (Brief="Component Mol Weight"); |
---|
| 206 | |
---|
| 207 | FlowDirection as Switcher (Brief="Flow Direction",Valid=["counter","cocurrent"],Default="cocurrent"); |
---|
| 208 | |
---|
| 209 | HotSide as Switcher (Brief="Flag for Fluid Alocation ",Valid=["outer","inner"],Default="outer"); |
---|
| 210 | innerFlowRegime as Switcher (Brief="Inner Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
| 211 | outerFlowRegime as Switcher (Brief="Outer Flow Regime ",Valid=["laminar","transition","turbulent"],Default="laminar"); |
---|
| 212 | |
---|
| 213 | InnerLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Inner Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
| 214 | InnerTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the Inner Side",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
| 215 | InnerTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Inner Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
| 216 | |
---|
| 217 | OuterLaminarCorrelation as Switcher (Brief="Heat Transfer Correlation in Laminar Flow for the Outer Side",Valid=["Hausen","Schlunder"],Default="Hausen"); |
---|
| 218 | OuterTransitionCorrelation as Switcher (Brief="Heat Transfer Correlation in Transition Flow for the OuterSide",Valid=["Gnielinski","Hausen"],Default="Gnielinski"); |
---|
| 219 | OuterTurbulentCorrelation as Switcher (Brief="Heat Transfer Correlation in Turbulent Flow for the Outer Side",Valid=["Petukhov","SiederTate"],Default="Petukhov"); |
---|
| 220 | |
---|
| 221 | Pi as constant (Brief="Pi Number",Default=3.14159265, Symbol = "\pi"); |
---|
| 222 | DoInner as length (Brief="Outside Diameter of Inner Pipe",Lower=1e-6); |
---|
| 223 | DiInner as length (Brief="Inside Diameter of Inner Pipe",Lower=1e-10); |
---|
| 224 | DiOuter as length (Brief="Inside Diameter of Outer pipe",Lower=1e-10); |
---|
| 225 | Lpipe as length (Brief="Effective Tube Length of one segment of Pipe",Lower=0.1, Symbol = "L_{pipe}"); |
---|
| 226 | Kwall as conductivity (Brief="Tube Wall Material Thermal Conductivity",Default=1.0, Symbol = "K_{wall}"); |
---|
| 227 | Rfi as positive (Brief="Inside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
| 228 | Rfo as positive (Brief="Outside Fouling Resistance",Unit='m^2*K/kW',Default=1e-6,Lower=0); |
---|
| 229 | |
---|
| 230 | Donozzle_Inner as length (Brief="Inner Side Outlet Nozzle Diameter",Default = 0.036,Lower=10e-6); |
---|
| 231 | Dinozzle_Inner as length (Brief="Inner Side Inlet Nozzle Diameter",Default = 0.036,Lower=10e-6); |
---|
| 232 | |
---|
| 233 | Donozzle_Outer as length (Brief="Outer Side Outlet Nozzle Diameter",Default = 0.036,Lower=10e-6); |
---|
| 234 | Dinozzle_Outer as length (Brief="Outer Side Inlet Nozzle Diameter",Default = 0.036,Lower=10e-6); |
---|
| 235 | |
---|
| 236 | InnerKinlet as positive (Brief="Inner Side Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
| 237 | InnerKoutlet as positive (Brief="Inner Side Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
| 238 | |
---|
| 239 | OuterKinlet as positive (Brief="Outer Side Inlet Nozzle Pressure Loss Coeff",Default=1.1); |
---|
| 240 | OuterKoutlet as positive (Brief="Outer Side Outlet Nozzle Pressure Loss Coeff",Default=0.7); |
---|
| 241 | |
---|
| 242 | VARIABLES |
---|
| 243 | |
---|
| 244 | in InletInner as stream (Brief="Inlet Inner Stream", PosX=0, PosY=0.5225, Symbol="_{inInner}"); |
---|
| 245 | in InletOuter as stream (Brief="Inlet Outer Stream", PosX=0.2805, PosY=0, Symbol="_{inOuter}"); |
---|
| 246 | |
---|
| 247 | out OutletInner as streamPH (Brief="Outlet Inner Stream", PosX=1, PosY=0.5225, Symbol="_{outInner}"); |
---|
| 248 | out OutletOuter as streamPH (Brief="Outlet Outer Stream", PosX=0.7264, PosY=1, Symbol="_{outOuter}"); |
---|
| 249 | |
---|
| 250 | Details as Details_Main (Brief="Some Details in the Heat Exchanger", Symbol=" "); |
---|
| 251 | Inner as Main_DoublePipe (Brief="Inner Side of the Heat Exchanger", Symbol="_{Inner}"); |
---|
| 252 | Outer as Main_DoublePipe (Brief="Outer Side of the Heat Exchanger", Symbol="_{Outer}"); |
---|
| 253 | |
---|
| 254 | Lincr(Npoints) as length (Brief = "Incremental Tube Length", Symbol = "L_{incr}"); |
---|
| 255 | |
---|
| 256 | SET |
---|
| 257 | |
---|
| 258 | #"Number of incremental points" |
---|
| 259 | Npoints = N+1; |
---|
| 260 | |
---|
| 261 | #"Component Molecular Weight" |
---|
| 262 | M = PP.MolecularWeight(); |
---|
| 263 | |
---|
| 264 | #"Pi Number" |
---|
| 265 | Pi = 3.14159265; |
---|
| 266 | |
---|
| 267 | #"Inner Pipe Cross Sectional Area for Flow" |
---|
| 268 | Inner.HeatTransfer.As=0.25*Pi*DiInner*DiInner; |
---|
| 269 | |
---|
| 270 | #"Outer Pipe Cross Sectional Area for Flow" |
---|
| 271 | Outer.HeatTransfer.As=0.25*Pi*(DiOuter*DiOuter - DoInner*DoInner); |
---|
| 272 | |
---|
| 273 | #"Inner Pipe Hydraulic Diameter for Heat Transfer" |
---|
| 274 | Inner.HeatTransfer.Dh=DiInner; |
---|
| 275 | |
---|
| 276 | #"Outer Pipe Hydraulic Diameter for Heat Transfer" |
---|
| 277 | Outer.HeatTransfer.Dh=(DiOuter*DiOuter-DoInner*DoInner)/DoInner; |
---|
| 278 | |
---|
| 279 | #"Inner Pipe Hydraulic Diameter for Pressure Drop" |
---|
| 280 | Inner.PressureDrop.Dh=DiInner; |
---|
| 281 | |
---|
| 282 | #"Outer Pipe Hydraulic Diameter for Pressure Drop" |
---|
| 283 | Outer.PressureDrop.Dh=DiOuter-DoInner; |
---|
| 284 | |
---|
| 285 | EQUATIONS |
---|
| 286 | |
---|
| 287 | "Outer Stream Average Temperature" |
---|
| 288 | Outer.Properties.Average.T(1:N) = 0.5*Outer.HeatTransfer.Tlocal(1:N) + 0.5*Outer.HeatTransfer.Tlocal(2:Npoints); |
---|
| 289 | |
---|
| 290 | "Inner Stream Average Temperature" |
---|
| 291 | Inner.Properties.Average.T(1:N) = 0.5*Inner.HeatTransfer.Tlocal(1:N) + 0.5*Inner.HeatTransfer.Tlocal(2:Npoints); |
---|
| 292 | |
---|
| 293 | "Outer Stream Average Pressure" |
---|
| 294 | Outer.Properties.Average.P(1:N) = 0.5*Outer.PressureDrop.Plocal(1:N) + 0.5*Outer.PressureDrop.Plocal(2:Npoints); |
---|
| 295 | |
---|
| 296 | "Inner Stream Average Pressure" |
---|
| 297 | Inner.Properties.Average.P(1:N) = 0.5*Inner.PressureDrop.Plocal(1:N) + 0.5*Inner.PressureDrop.Plocal(2:Npoints); |
---|
| 298 | |
---|
| 299 | "Inner Stream Wall Temperature" |
---|
| 300 | Inner.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
| 301 | |
---|
| 302 | "Outer Stream Wall Temperature" |
---|
| 303 | Outer.Properties.Wall.Twall = 0.5*Outer.Properties.Average.T + 0.5*Inner.Properties.Average.T; |
---|
| 304 | |
---|
| 305 | "Outer Stream Average Molecular Weight" |
---|
| 306 | Outer.Properties.Average.Mw = sum(M*InletOuter.z); |
---|
| 307 | |
---|
| 308 | "Inner Stream Average Molecular Weight" |
---|
| 309 | Inner.Properties.Average.Mw = sum(M*InletInner.z); |
---|
| 310 | |
---|
| 311 | |
---|
| 312 | if InletInner.v equal 0 |
---|
| 313 | |
---|
| 314 | then |
---|
| 315 | "Inlet Mass Density Inner Stream" |
---|
| 316 | Inner.Properties.Inlet.rho = PP.LiquidDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
| 317 | |
---|
| 318 | "Outlet Mass Density Inner Stream" |
---|
| 319 | Inner.Properties.Outlet.rho = PP.LiquidDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
| 320 | |
---|
| 321 | else |
---|
| 322 | "Inlet Mass Density Inner Stream" |
---|
| 323 | Inner.Properties.Inlet.rho = PP.VapourDensity(InletInner.T,InletInner.P,InletInner.z); |
---|
| 324 | |
---|
| 325 | "Outlet Mass Density Inner Stream" |
---|
| 326 | Inner.Properties.Outlet.rho = PP.VapourDensity(OutletInner.T,OutletInner.P,OutletInner.z); |
---|
| 327 | |
---|
| 328 | end |
---|
| 329 | |
---|
| 330 | if InletOuter.v equal 0 |
---|
| 331 | |
---|
| 332 | then |
---|
| 333 | "Inlet Mass Density Outer Stream" |
---|
| 334 | Outer.Properties.Inlet.rho = PP.LiquidDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
| 335 | |
---|
| 336 | "Outlet Mass Density Outer Stream" |
---|
| 337 | Outer.Properties.Outlet.rho = PP.LiquidDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
| 338 | |
---|
| 339 | else |
---|
| 340 | "Inlet Mass Density Outer Stream" |
---|
| 341 | Outer.Properties.Inlet.rho = PP.VapourDensity(InletOuter.T,InletOuter.P,InletOuter.z); |
---|
| 342 | |
---|
| 343 | "Outlet Mass Density Outer Stream" |
---|
| 344 | Outer.Properties.Outlet.rho = PP.VapourDensity(OutletOuter.T,OutletOuter.P,OutletOuter.z); |
---|
| 345 | |
---|
| 346 | end |
---|
| 347 | |
---|
[574] | 348 | for i in [1:N] do |
---|
[438] | 349 | |
---|
| 350 | if InletInner.v equal 0 |
---|
| 351 | |
---|
| 352 | then |
---|
| 353 | |
---|
| 354 | "Average Heat Capacity Inner Stream" |
---|
| 355 | Inner.Properties.Average.Cp(i) = PP.LiquidCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 356 | |
---|
| 357 | "Average Mass Density Inner Stream" |
---|
| 358 | Inner.Properties.Average.rho(i) = PP.LiquidDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 359 | |
---|
| 360 | "Average Viscosity Inner Stream" |
---|
| 361 | Inner.Properties.Average.Mu(i) = PP.LiquidViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 362 | |
---|
| 363 | "Average Conductivity Inner Stream" |
---|
| 364 | Inner.Properties.Average.K(i) = PP.LiquidThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 365 | |
---|
| 366 | "Viscosity Inner Stream at wall temperature" |
---|
| 367 | Inner.Properties.Wall.Mu(i) = PP.LiquidViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 368 | |
---|
| 369 | else |
---|
| 370 | |
---|
| 371 | "Average Heat Capacity InnerStream" |
---|
| 372 | Inner.Properties.Average.Cp(i) = PP.VapourCp(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 373 | |
---|
| 374 | "Average Mass Density Inner Stream" |
---|
| 375 | Inner.Properties.Average.rho(i) = PP.VapourDensity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 376 | |
---|
| 377 | "Average Viscosity Inner Stream" |
---|
| 378 | Inner.Properties.Average.Mu(i) = PP.VapourViscosity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 379 | |
---|
| 380 | "Average Conductivity Inner Stream" |
---|
| 381 | Inner.Properties.Average.K(i) = PP.VapourThermalConductivity(Inner.Properties.Average.T(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 382 | |
---|
| 383 | "Viscosity Inner Stream at wall temperature" |
---|
| 384 | Inner.Properties.Wall.Mu(i) = PP.VapourViscosity(Inner.Properties.Wall.Twall(i),Inner.Properties.Average.P(i),InletInner.z); |
---|
| 385 | |
---|
| 386 | end |
---|
| 387 | |
---|
| 388 | if InletOuter.v equal 0 |
---|
| 389 | |
---|
| 390 | then |
---|
| 391 | |
---|
| 392 | "Average Heat Capacity Outer Stream" |
---|
| 393 | Outer.Properties.Average.Cp(i) = PP.LiquidCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 394 | |
---|
| 395 | "Average Mass Density Outer Stream" |
---|
| 396 | Outer.Properties.Average.rho(i) = PP.LiquidDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 397 | |
---|
| 398 | "Average Viscosity Outer Stream" |
---|
| 399 | Outer.Properties.Average.Mu(i) = PP.LiquidViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 400 | |
---|
| 401 | "Average Conductivity Outer Stream" |
---|
| 402 | Outer.Properties.Average.K(i) = PP.LiquidThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 403 | |
---|
| 404 | "Viscosity Outer Stream at wall temperature" |
---|
| 405 | Outer.Properties.Wall.Mu(i) = PP.LiquidViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 406 | |
---|
| 407 | |
---|
| 408 | else |
---|
| 409 | |
---|
| 410 | "Average Heat Capacity Outer Stream" |
---|
| 411 | Outer.Properties.Average.Cp(i) = PP.VapourCp(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 412 | |
---|
| 413 | "Average Mass Density Outer Stream" |
---|
| 414 | Outer.Properties.Average.rho(i) = PP.VapourDensity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 415 | |
---|
| 416 | "Average Viscosity Outer Stream" |
---|
| 417 | Outer.Properties.Average.Mu(i) = PP.VapourViscosity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 418 | |
---|
| 419 | "Average Conductivity Outer Stream" |
---|
| 420 | Outer.Properties.Average.K(i) = PP.VapourThermalConductivity(Outer.Properties.Average.T(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 421 | |
---|
| 422 | "Viscosity Outer Stream at wall temperature" |
---|
| 423 | Outer.Properties.Wall.Mu(i) = PP.VapourViscosity(Outer.Properties.Wall.Twall(i),Outer.Properties.Average.P(i),InletOuter.z); |
---|
| 424 | |
---|
| 425 | end |
---|
| 426 | |
---|
| 427 | end |
---|
| 428 | |
---|
| 429 | switch HotSide |
---|
| 430 | |
---|
| 431 | case "outer": |
---|
| 432 | |
---|
| 433 | switch FlowDirection |
---|
| 434 | |
---|
| 435 | case "cocurrent": |
---|
| 436 | "Energy Balance Outer Stream in cocurrent flow" |
---|
| 437 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
| 438 | |
---|
| 439 | case "counter": |
---|
| 440 | "Energy Balance Outer Stream in counter flow" |
---|
| 441 | Details.Q(1:N) = InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
| 442 | |
---|
| 443 | end |
---|
| 444 | |
---|
| 445 | "Energy Balance Inner Stream" |
---|
| 446 | Details.Q(1:N) = -InletInner.F*(Inner.HeatTransfer.Enth(1:N) - Inner.HeatTransfer.Enth(2:Npoints)); |
---|
| 447 | |
---|
| 448 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
| 449 | |
---|
| 450 | case "inner": |
---|
| 451 | |
---|
| 452 | "Energy Balance Hot Stream" |
---|
| 453 | Details.Q(1:N) = InletInner.F*(Inner.HeatTransfer.Enth(1:N)-Inner.HeatTransfer.Enth(2:Npoints)); |
---|
| 454 | |
---|
| 455 | switch FlowDirection |
---|
| 456 | |
---|
| 457 | case "cocurrent": |
---|
| 458 | "Energy Balance Cold Stream in cocurrent flow" |
---|
| 459 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(1:N) - Outer.HeatTransfer.Enth(2:Npoints)); |
---|
| 460 | |
---|
| 461 | case "counter": |
---|
| 462 | "Energy Balance Cold Stream in counter flow" |
---|
| 463 | Details.Q(1:N) = -InletOuter.F*(Outer.HeatTransfer.Enth(2:Npoints) - Outer.HeatTransfer.Enth(1:N)); |
---|
| 464 | |
---|
| 465 | end |
---|
| 466 | |
---|
| 467 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
| 468 | |
---|
| 469 | end |
---|
| 470 | |
---|
| 471 | "Flow Mass Inlet Inner Stream" |
---|
| 472 | Inner.Properties.Inlet.Fw = sum(M*InletInner.z)*InletInner.F; |
---|
| 473 | |
---|
| 474 | "Flow Mass Outlet Inner Stream" |
---|
| 475 | Inner.Properties.Outlet.Fw = sum(M*OutletInner.z)*OutletInner.F; |
---|
| 476 | |
---|
| 477 | "Flow Mass Inlet Outer Stream" |
---|
| 478 | Outer.Properties.Inlet.Fw = sum(M*InletOuter.z)*InletOuter.F; |
---|
| 479 | |
---|
| 480 | "Flow Mass Outlet Outer Stream" |
---|
| 481 | Outer.Properties.Outlet.Fw = sum(M*OutletOuter.z)*OutletOuter.F; |
---|
| 482 | |
---|
| 483 | "Molar Balance Outer Stream" |
---|
| 484 | OutletOuter.F = InletOuter.F; |
---|
| 485 | |
---|
| 486 | "Molar Balance Inner Stream" |
---|
| 487 | OutletInner.F = InletInner.F; |
---|
| 488 | |
---|
| 489 | "Outer Stream Molar Fraction Constraint" |
---|
| 490 | OutletOuter.z=InletOuter.z; |
---|
| 491 | |
---|
| 492 | "InnerStream Molar Fraction Constraint" |
---|
| 493 | OutletInner.z=InletInner.z; |
---|
| 494 | |
---|
| 495 | "Total Exchange Surface Area for one segment of pipe" |
---|
| 496 | Details.A=Pi*DoInner*Lpipe; |
---|
| 497 | |
---|
| 498 | "Pipe Initial Length from Left to Right - OBS: Left: Always Inlet inner side" |
---|
| 499 | Lincr(1) = 0*'m'; |
---|
| 500 | |
---|
[574] | 501 | for i in [1:N] do |
---|
[438] | 502 | |
---|
| 503 | "Incremental Length" |
---|
| 504 | Lincr(i+1) = i*abs(Lpipe)/N; |
---|
| 505 | |
---|
| 506 | end |
---|
| 507 | |
---|
[574] | 508 | for i in [1:N] do |
---|
[438] | 509 | |
---|
| 510 | switch innerFlowRegime |
---|
| 511 | |
---|
| 512 | case "laminar": |
---|
| 513 | |
---|
| 514 | "Inner Side Friction Factor for Pressure Drop - laminar Flow" |
---|
| 515 | Inner.PressureDrop.fi(i)*Inner.PressureDrop.Re(i) = 16; |
---|
| 516 | |
---|
| 517 | when Inner.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
| 518 | |
---|
| 519 | case "transition": |
---|
| 520 | |
---|
| 521 | "using Turbulent Flow - to be implemented" |
---|
| 522 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
| 523 | |
---|
| 524 | when Inner.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
| 525 | when Inner.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
| 526 | |
---|
| 527 | case "turbulent": |
---|
| 528 | |
---|
| 529 | "Inner Side Friction Factor - Turbulent Flow" |
---|
| 530 | (Inner.PressureDrop.fi(i)-0.0035)*(Inner.PressureDrop.Re(i)^0.42) = 0.264; |
---|
| 531 | |
---|
| 532 | when Inner.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
| 533 | |
---|
| 534 | end |
---|
| 535 | |
---|
| 536 | end |
---|
| 537 | |
---|
[574] | 538 | for i in [1:N] do |
---|
[438] | 539 | |
---|
| 540 | switch outerFlowRegime |
---|
| 541 | |
---|
| 542 | case "laminar": |
---|
| 543 | |
---|
| 544 | "Outer Side Friction Factor - laminar Flow" |
---|
| 545 | Outer.PressureDrop.fi(i)*Outer.PressureDrop.Re(i) = 16; |
---|
| 546 | |
---|
| 547 | when Outer.PressureDrop.Re(i) > 2300 switchto "transition"; |
---|
| 548 | |
---|
| 549 | case "transition": |
---|
| 550 | |
---|
| 551 | "using Turbulent Flow - Transition Flow must be implemented" |
---|
| 552 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
| 553 | |
---|
| 554 | when Outer.PressureDrop.Re(i) < 2300 switchto "laminar"; |
---|
| 555 | when Outer.PressureDrop.Re(i) > 10000 switchto "turbulent"; |
---|
| 556 | |
---|
| 557 | case "turbulent": |
---|
| 558 | |
---|
| 559 | "Outer Side Friction Factor - Turbulent Flow" |
---|
| 560 | (Outer.PressureDrop.fi(i)-0.0035)*(Outer.PressureDrop.Re(i)^0.42) = 0.264; |
---|
| 561 | |
---|
| 562 | when Outer.PressureDrop.Re(i) < 10000 switchto "transition"; |
---|
| 563 | |
---|
| 564 | end |
---|
| 565 | |
---|
| 566 | end |
---|
| 567 | |
---|
[574] | 568 | for i in [1:N] do |
---|
[438] | 569 | |
---|
| 570 | switch innerFlowRegime |
---|
| 571 | |
---|
| 572 | case "laminar": |
---|
| 573 | |
---|
| 574 | "Inner Side Friction Factor for Heat Transfer - laminar Flow" |
---|
| 575 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
| 576 | |
---|
| 577 | switch InnerLaminarCorrelation |
---|
| 578 | |
---|
| 579 | case "Hausen": |
---|
| 580 | |
---|
| 581 | "Nusselt Number" |
---|
| 582 | Inner.HeatTransfer.Nu(i) = 3.665 + ((0.19*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.8)/(1+0.117*((DiInner/Lpipe)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i))^0.467)); |
---|
| 583 | |
---|
| 584 | case "Schlunder": |
---|
| 585 | |
---|
| 586 | "Nusselt Number" |
---|
| 587 | Inner.HeatTransfer.Nu(i) = (49.027896+4.173281*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i)*(DiInner/Lpipe))^(1/3); |
---|
| 588 | |
---|
| 589 | end |
---|
| 590 | |
---|
| 591 | when Inner.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
| 592 | |
---|
| 593 | case "transition": |
---|
| 594 | |
---|
| 595 | "Inner Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 596 | Inner.HeatTransfer.fi(i) = 1/(0.79*ln(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
| 597 | |
---|
| 598 | switch InnerTransitionCorrelation |
---|
| 599 | |
---|
| 600 | case "Gnielinski": |
---|
| 601 | |
---|
| 602 | "Nusselt Number" |
---|
| 603 | Inner.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*(Inner.HeatTransfer.Re(i)-1000)*Inner.HeatTransfer.PR(i); |
---|
| 604 | |
---|
| 605 | case "Hausen": |
---|
| 606 | |
---|
| 607 | "Nusselt Number" |
---|
| 608 | Inner.HeatTransfer.Nu(i) =0.116*(Inner.HeatTransfer.Re(i)^(0.667)-125)*Inner.HeatTransfer.PR(i)^(0.333)*(1+(DiInner/Lpipe)^0.667); |
---|
| 609 | |
---|
| 610 | end |
---|
| 611 | |
---|
| 612 | when Inner.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
| 613 | when Inner.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
| 614 | |
---|
| 615 | case "turbulent": |
---|
| 616 | |
---|
| 617 | switch InnerTurbulentCorrelation |
---|
| 618 | |
---|
| 619 | case "Petukhov": |
---|
| 620 | |
---|
| 621 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 622 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
| 623 | |
---|
| 624 | "Nusselt Number" |
---|
| 625 | Inner.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Inner.HeatTransfer.fi(i))*((Inner.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Inner.HeatTransfer.fi(i)*Inner.HeatTransfer.Re(i)*Inner.HeatTransfer.PR(i); |
---|
| 626 | |
---|
| 627 | case "SiederTate": |
---|
| 628 | |
---|
| 629 | "Nusselt Number" |
---|
| 630 | Inner.HeatTransfer.Nu(i) = 0.027*(Inner.HeatTransfer.PR(i))^(1/3)*(Inner.HeatTransfer.Re(i))^(4/5); |
---|
| 631 | |
---|
| 632 | "Inner Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 633 | Inner.HeatTransfer.fi(i) = 1/(1.82*log(Inner.HeatTransfer.Re(i))-1.64)^2; |
---|
| 634 | |
---|
| 635 | end |
---|
| 636 | |
---|
| 637 | when Inner.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
| 638 | |
---|
| 639 | end |
---|
| 640 | |
---|
| 641 | end |
---|
| 642 | |
---|
[574] | 643 | for i in [1:N] do |
---|
[438] | 644 | |
---|
| 645 | switch outerFlowRegime |
---|
| 646 | |
---|
| 647 | case "laminar": |
---|
| 648 | |
---|
| 649 | "Outer Side Friction Factor for Heat Transfer - laminar Flow" |
---|
| 650 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
| 651 | |
---|
| 652 | switch OuterLaminarCorrelation |
---|
| 653 | |
---|
| 654 | case "Hausen": |
---|
| 655 | |
---|
| 656 | "Nusselt Number" |
---|
| 657 | Outer.HeatTransfer.Nu(i) = 3.665 + ((0.19*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.8)/(1+0.117*((Outer.HeatTransfer.Dh/Lpipe)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i))^0.467)); |
---|
| 658 | |
---|
| 659 | case "Schlunder": |
---|
| 660 | |
---|
| 661 | "Nusselt Number" |
---|
| 662 | Outer.HeatTransfer.Nu(i) = (49.027896+4.173281*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i)*(Outer.HeatTransfer.Dh/Lpipe))^(1/3); |
---|
| 663 | |
---|
| 664 | end |
---|
| 665 | |
---|
| 666 | when Outer.HeatTransfer.Re(i) > 2300 switchto "transition"; |
---|
| 667 | |
---|
| 668 | case "transition": |
---|
| 669 | |
---|
| 670 | switch OuterTransitionCorrelation |
---|
| 671 | |
---|
| 672 | case "Gnielinski": |
---|
| 673 | |
---|
| 674 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 675 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
| 676 | |
---|
| 677 | "Nusselt Number" |
---|
| 678 | Outer.HeatTransfer.Nu(i)*(1+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*(Outer.HeatTransfer.Re(i)-1000)*Outer.HeatTransfer.PR(i); |
---|
| 679 | |
---|
| 680 | case "Hausen": |
---|
| 681 | |
---|
| 682 | "Nusselt Number" |
---|
| 683 | Outer.HeatTransfer.Nu(i) = 0.116*(Outer.HeatTransfer.Re(i)^(0.667)-125)*Outer.HeatTransfer.PR(i)^(0.333)*(1+(Outer.HeatTransfer.Dh/Lpipe)^0.667); |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | "Outer Side Friction Factor for Heat Transfer - transition Flow" |
---|
| 687 | Outer.HeatTransfer.fi(i) = 1/(0.79*ln(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
| 688 | |
---|
| 689 | end |
---|
| 690 | |
---|
| 691 | when Outer.HeatTransfer.Re(i) < 2300 switchto "laminar"; |
---|
| 692 | when Outer.HeatTransfer.Re(i) > 10000 switchto "turbulent"; |
---|
| 693 | |
---|
| 694 | case "turbulent": |
---|
| 695 | |
---|
| 696 | switch OuterTurbulentCorrelation |
---|
| 697 | |
---|
| 698 | case "Petukhov": |
---|
| 699 | |
---|
| 700 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 701 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
| 702 | |
---|
| 703 | "Nusselt Number" |
---|
| 704 | Outer.HeatTransfer.Nu(i)*(1.07+(12.7*sqrt(0.125*Outer.HeatTransfer.fi(i))*((Outer.HeatTransfer.PR(i))^(2/3) -1))) = 0.125*Outer.HeatTransfer.fi(i)*Outer.HeatTransfer.Re(i)*Outer.HeatTransfer.PR(i); |
---|
| 705 | |
---|
| 706 | case "SiederTate": |
---|
| 707 | |
---|
| 708 | "Nusselt Number" |
---|
| 709 | Outer.HeatTransfer.Nu(i) = 0.027*(Outer.HeatTransfer.PR(i))^(1/3)*(Outer.HeatTransfer.Re(i))^(4/5); |
---|
| 710 | |
---|
| 711 | "Outer Side Friction Factor for Heat Transfer - turbulent Flow" |
---|
| 712 | Outer.HeatTransfer.fi(i) = 1/(1.82*log(Outer.HeatTransfer.Re(i))-1.64)^2; |
---|
| 713 | |
---|
| 714 | end |
---|
| 715 | |
---|
| 716 | when Outer.HeatTransfer.Re(i) < 10000 switchto "transition"; |
---|
| 717 | |
---|
| 718 | end |
---|
| 719 | |
---|
| 720 | end |
---|
| 721 | |
---|
| 722 | "Inner Pipe Film Coefficient" |
---|
| 723 | Inner.HeatTransfer.hcoeff = (Inner.HeatTransfer.Nu*Inner.Properties.Average.K/DiInner)*Inner.HeatTransfer.Phi; |
---|
| 724 | |
---|
| 725 | "Outer Pipe Film Coefficient" |
---|
| 726 | Outer.HeatTransfer.hcoeff= (Outer.HeatTransfer.Nu*Outer.Properties.Average.K/Outer.HeatTransfer.Dh)*Outer.HeatTransfer.Phi; |
---|
| 727 | |
---|
| 728 | "Outer Pipe Phi correction" |
---|
| 729 | Outer.HeatTransfer.Phi = (Outer.Properties.Average.Mu/Outer.Properties.Wall.Mu)^0.14; |
---|
| 730 | |
---|
| 731 | "Inner Pipe Phi correction" |
---|
| 732 | Inner.HeatTransfer.Phi = (Inner.Properties.Average.Mu/Inner.Properties.Wall.Mu)^0.14; |
---|
| 733 | |
---|
| 734 | "Outer Pipe Prandtl Number" |
---|
| 735 | Outer.HeatTransfer.PR = ((Outer.Properties.Average.Cp/Outer.Properties.Average.Mw)*Outer.Properties.Average.Mu)/Outer.Properties.Average.K; |
---|
| 736 | |
---|
| 737 | "Inner Pipe Prandtl Number" |
---|
| 738 | Inner.HeatTransfer.PR = ((Inner.Properties.Average.Cp/Inner.Properties.Average.Mw)*Inner.Properties.Average.Mu)/Inner.Properties.Average.K; |
---|
| 739 | |
---|
| 740 | "Outer Pipe Reynolds Number for Heat Transfer" |
---|
| 741 | Outer.HeatTransfer.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.HeatTransfer.Dh)/Outer.Properties.Average.Mu; |
---|
| 742 | |
---|
| 743 | "Outer Pipe Reynolds Number for Pressure Drop" |
---|
| 744 | Outer.PressureDrop.Re = (Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean*Outer.PressureDrop.Dh)/Outer.Properties.Average.Mu; |
---|
| 745 | |
---|
| 746 | "Inner Pipe Reynolds Number for Heat Transfer" |
---|
| 747 | Inner.HeatTransfer.Re = (Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean*Inner.HeatTransfer.Dh)/Inner.Properties.Average.Mu; |
---|
| 748 | |
---|
| 749 | "Inner Pipe Reynolds Number for Pressure Drop" |
---|
| 750 | Inner.PressureDrop.Re = Inner.HeatTransfer.Re; |
---|
| 751 | |
---|
| 752 | "Outer Pipe Velocity" |
---|
| 753 | Outer.HeatTransfer.Vmean*(Outer.HeatTransfer.As*Outer.Properties.Average.rho) = Outer.Properties.Inlet.Fw; |
---|
| 754 | |
---|
| 755 | "Inner Pipe Velocity" |
---|
| 756 | Inner.HeatTransfer.Vmean*(Inner.HeatTransfer.As*Inner.Properties.Average.rho) = Inner.Properties.Inlet.Fw; |
---|
| 757 | |
---|
| 758 | "Overall Heat Transfer Coefficient Clean" |
---|
| 759 | Details.Uc*((DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
| 760 | |
---|
| 761 | "Overall Heat Transfer Coefficient Dirty" |
---|
| 762 | Details.Ud*(Rfi*(DoInner/DiInner) + Rfo + (DoInner/(Inner.HeatTransfer.hcoeff*DiInner) )+(DoInner*ln(DoInner/DiInner)/(2*Kwall))+(1/(Outer.HeatTransfer.hcoeff)))=1; |
---|
| 763 | |
---|
| 764 | "Total Duty" |
---|
| 765 | Details.Qtotal = sum(Details.Q); |
---|
| 766 | |
---|
[482] | 767 | switch CalculationApproach |
---|
| 768 | |
---|
| 769 | case "Full": |
---|
| 770 | |
---|
[438] | 771 | switch HotSide |
---|
| 772 | |
---|
| 773 | case "outer": |
---|
| 774 | |
---|
| 775 | "Incremental Duty" |
---|
| 776 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Outer.Properties.Average.T - Inner.Properties.Average.T); |
---|
| 777 | |
---|
| 778 | when InletInner.T > InletOuter.T switchto "inner"; |
---|
| 779 | |
---|
| 780 | case "inner": |
---|
| 781 | |
---|
| 782 | "Incremental Duty" |
---|
| 783 | Details.Q = Details.Ud*Pi*DoInner*(Lpipe/N)*(Inner.Properties.Average.T - Outer.Properties.Average.T); |
---|
| 784 | |
---|
| 785 | when InletInner.T < InletOuter.T switchto "outer"; |
---|
| 786 | |
---|
| 787 | end |
---|
| 788 | |
---|
[482] | 789 | case "Simplified": |
---|
| 790 | |
---|
| 791 | "Duty" |
---|
| 792 | Details.Q = Qestimated/N; |
---|
| 793 | |
---|
| 794 | end |
---|
| 795 | |
---|
[574] | 796 | for i in [2:N] do |
---|
[438] | 797 | |
---|
| 798 | "Incremental Enthalpy Inner Stream" |
---|
| 799 | Inner.HeatTransfer.Enth(i) = (1-InletInner.v)*PP.LiquidEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z) + InletInner.v*PP.VapourEnthalpy(Inner.HeatTransfer.Tlocal(i), Inner.PressureDrop.Plocal(i), InletInner.z); |
---|
| 800 | |
---|
| 801 | "Incremental Enthalpy Outer Stream" |
---|
| 802 | Outer.HeatTransfer.Enth(i) = (1-InletOuter.v)*PP.LiquidEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z) + InletOuter.v*PP.VapourEnthalpy(Outer.HeatTransfer.Tlocal(i), Outer.PressureDrop.Plocal(i), InletOuter.z); |
---|
| 803 | |
---|
| 804 | end |
---|
| 805 | |
---|
| 806 | "Enthalpy of Inner Side - Inlet Boundary" |
---|
| 807 | Inner.HeatTransfer.Enth(1) = InletInner.h; |
---|
| 808 | |
---|
| 809 | "Enthalpy of inner Side - Outlet Boundary" |
---|
| 810 | Inner.HeatTransfer.Enth(Npoints) = OutletInner.h; |
---|
| 811 | |
---|
| 812 | "Temperature of Inner Side - Inlet Boundary" |
---|
| 813 | Inner.HeatTransfer.Tlocal(1) = InletInner.T; |
---|
| 814 | |
---|
| 815 | "Temperature of Inner Side - Outlet Boundary" |
---|
| 816 | Inner.HeatTransfer.Tlocal(Npoints) = OutletInner.T; |
---|
| 817 | |
---|
| 818 | "Pressure of Inner Side - Inlet Boundary" |
---|
| 819 | Inner.PressureDrop.Plocal(1) = InletInner.P; |
---|
| 820 | |
---|
| 821 | "Pressure of Inner Side - Outlet Boundary" |
---|
| 822 | Inner.PressureDrop.Plocal(Npoints) = OutletInner.P; |
---|
| 823 | |
---|
| 824 | switch FlowDirection |
---|
| 825 | |
---|
| 826 | case "cocurrent": |
---|
| 827 | |
---|
| 828 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
| 829 | Outer.HeatTransfer.Enth(1) = InletOuter.h; |
---|
| 830 | |
---|
| 831 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
| 832 | Outer.HeatTransfer.Enth(Npoints) = OutletOuter.h; |
---|
| 833 | |
---|
| 834 | "Temperature of Outer Side - Inlet Boundary" |
---|
| 835 | Outer.HeatTransfer.Tlocal(1) = InletOuter.T; |
---|
| 836 | |
---|
| 837 | "Temperature of Outer Side - Outlet Boundary" |
---|
| 838 | Outer.HeatTransfer.Tlocal(Npoints) = OutletOuter.T; |
---|
| 839 | |
---|
| 840 | "Pressure of Outer Side - Inlet Boundary" |
---|
| 841 | Outer.PressureDrop.Plocal(1) = InletOuter.P; |
---|
| 842 | |
---|
| 843 | "Pressure of Outer Side - Outlet Boundary" |
---|
| 844 | Outer.PressureDrop.Plocal(Npoints) = OutletOuter.P; |
---|
| 845 | |
---|
| 846 | case "counter": |
---|
| 847 | |
---|
| 848 | "Enthalpy of Outer Side - Inlet Boundary" |
---|
| 849 | Outer.HeatTransfer.Enth(Npoints) = InletOuter.h; |
---|
| 850 | |
---|
| 851 | "Enthalpy of Outer Side - Outlet Boundary" |
---|
| 852 | Outer.HeatTransfer.Enth(1) = OutletOuter.h; |
---|
| 853 | |
---|
| 854 | "Temperature of Outer Side - Inlet Boundary" |
---|
| 855 | Outer.HeatTransfer.Tlocal(Npoints) = InletOuter.T; |
---|
| 856 | |
---|
| 857 | "Temperature of Outer Side - Outlet Boundary" |
---|
| 858 | Outer.HeatTransfer.Tlocal(1) = OutletOuter.T; |
---|
| 859 | |
---|
| 860 | "Pressure of Outer Side - Inlet Boundary" |
---|
| 861 | Outer.PressureDrop.Plocal(Npoints) = InletOuter.P; |
---|
| 862 | |
---|
| 863 | "Pressure of Outer Side - Outlet Boundary" |
---|
| 864 | Outer.PressureDrop.Plocal(1) = OutletOuter.P; |
---|
| 865 | |
---|
| 866 | end |
---|
| 867 | |
---|
| 868 | switch FlowDirection |
---|
| 869 | |
---|
| 870 | case "cocurrent": |
---|
| 871 | |
---|
| 872 | "Total Pressure Drop Outer Stream" |
---|
| 873 | Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric(Npoints)+Outer.PressureDrop.Pdnozzle_in+Outer.PressureDrop.Pdnozzle_out; |
---|
| 874 | |
---|
| 875 | "Outer Pipe Pressure Drop for friction" |
---|
| 876 | Outer.PressureDrop.Pd_fric(2:Npoints) = (2*Outer.PressureDrop.fi*Lincr(2:Npoints)*Outer.Properties.Average.rho*Outer.HeatTransfer.Vmean^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi); |
---|
| 877 | |
---|
| 878 | "Outer Pipe Pressure Drop for friction" |
---|
| 879 | Outer.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
| 880 | |
---|
[574] | 881 | for i in [1:N] do |
---|
[438] | 882 | |
---|
| 883 | "Outer Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
| 884 | Outer.PressureDrop.Plocal(i+1) = Outer.PressureDrop.Plocal(1) - Outer.PressureDrop.Pd_fric(i+1); |
---|
| 885 | |
---|
| 886 | end |
---|
| 887 | |
---|
| 888 | case "counter": |
---|
| 889 | |
---|
| 890 | "Total Pressure Drop Outer Stream" |
---|
| 891 | Outer.PressureDrop.Pdrop = Outer.PressureDrop.Pd_fric(1)+Outer.PressureDrop.Pdnozzle_in+Outer.PressureDrop.Pdnozzle_out; |
---|
| 892 | |
---|
| 893 | |
---|
[574] | 894 | for i in [1:N] do |
---|
[438] | 895 | |
---|
| 896 | "Outer Pipe Pressure Drop for friction" |
---|
| 897 | Outer.PressureDrop.Pd_fric(i) = (2*Outer.PressureDrop.fi(i)*Lincr(1+N-i)*Outer.Properties.Average.rho(i)*Outer.HeatTransfer.Vmean(i)^2)/(Outer.PressureDrop.Dh*Outer.HeatTransfer.Phi(i)); |
---|
| 898 | |
---|
| 899 | end |
---|
| 900 | |
---|
| 901 | "Outer Pipe Pressure Drop for friction" |
---|
| 902 | Outer.PressureDrop.Pd_fric(Npoints) = 0*'kPa'; |
---|
| 903 | |
---|
[574] | 904 | for i in [1:N] do |
---|
[438] | 905 | |
---|
| 906 | "Outer Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
| 907 | Outer.PressureDrop.Plocal(i) = Outer.PressureDrop.Plocal(Npoints) - Outer.PressureDrop.Pd_fric(i+1); |
---|
| 908 | |
---|
| 909 | end |
---|
| 910 | |
---|
| 911 | end |
---|
| 912 | |
---|
| 913 | "Total Pressure Drop Inner Stream" |
---|
| 914 | Inner.PressureDrop.Pdrop = Inner.PressureDrop.Pd_fric(Npoints)+Inner.PressureDrop.Pdnozzle_in+Inner.PressureDrop.Pdnozzle_out; |
---|
| 915 | |
---|
| 916 | "Inner Pipe Pressure Drop for friction" |
---|
| 917 | Inner.PressureDrop.Pd_fric(2:Npoints) = (2*Inner.PressureDrop.fi*Lincr(2:Npoints)*Inner.Properties.Average.rho*Inner.HeatTransfer.Vmean^2)/(DiInner*Inner.HeatTransfer.Phi); |
---|
| 918 | |
---|
| 919 | "Inner Pipe Pressure Drop for friction" |
---|
| 920 | Inner.PressureDrop.Pd_fric(1) = 0*'kPa'; |
---|
| 921 | |
---|
[574] | 922 | for i in [1:N] do |
---|
[438] | 923 | |
---|
| 924 | "Inner Pipe Local Pressure"# FIXME: NOZZLE PRESSURE DROP MUST BE ADDED |
---|
| 925 | Inner.PressureDrop.Plocal(i+1) = Inner.PressureDrop.Plocal(1) - Inner.PressureDrop.Pd_fric(i+1); |
---|
| 926 | |
---|
| 927 | end |
---|
| 928 | |
---|
| 929 | |
---|
| 930 | "Velocity Inner Side Inlet Nozzle" |
---|
| 931 | Inner.PressureDrop.Vnozzle_in = Inner.Properties.Inlet.Fw/(Inner.Properties.Inlet.rho*(0.25*Pi*Dinozzle_Inner^2)); |
---|
| 932 | |
---|
| 933 | "Velocity Inner Side Outlet Nozzle" |
---|
| 934 | Inner.PressureDrop.Vnozzle_out = Inner.Properties.Outlet.Fw/(Inner.Properties.Outlet.rho*(0.25*Pi*Donozzle_Inner^2)); |
---|
| 935 | |
---|
| 936 | "Velocity Outer Side Inlet Nozzle" |
---|
| 937 | Outer.PressureDrop.Vnozzle_in = Outer.Properties.Inlet.Fw/(Outer.Properties.Inlet.rho*(0.25*Pi*Dinozzle_Outer^2)); |
---|
| 938 | |
---|
| 939 | "Velocity Outer Side Outlet Nozzle" |
---|
| 940 | Outer.PressureDrop.Vnozzle_out = Outer.Properties.Outlet.Fw/(Outer.Properties.Outlet.rho*(0.25*Pi*Donozzle_Outer^2)); |
---|
| 941 | |
---|
| 942 | "Pressure Drop Inner Side Inlet Nozzle" |
---|
| 943 | Inner.PressureDrop.Pdnozzle_in = 0.5*InnerKinlet*Inner.Properties.Inlet.rho*Inner.PressureDrop.Vnozzle_in^2; |
---|
| 944 | |
---|
| 945 | "Pressure Drop Inner Side Outlet Nozzle" |
---|
| 946 | Inner.PressureDrop.Pdnozzle_out = 0.5*InnerKoutlet*Inner.Properties.Outlet.rho*Inner.PressureDrop.Vnozzle_out^2; |
---|
| 947 | |
---|
| 948 | "Pressure Drop Outer Side Inlet Nozzle" |
---|
| 949 | Outer.PressureDrop.Pdnozzle_in = 0.5*OuterKinlet*Outer.Properties.Inlet.rho*Outer.PressureDrop.Vnozzle_in^2; |
---|
| 950 | |
---|
| 951 | "Pressure Drop Outer Side Outlet Nozzle" |
---|
| 952 | Outer.PressureDrop.Pdnozzle_out = 0.5*OuterKoutlet*Outer.Properties.Outlet.rho*Outer.PressureDrop.Vnozzle_out^2; |
---|
| 953 | |
---|
| 954 | "Inner Side Inlet Nozzle rho-V^2" |
---|
| 955 | Inner.PressureDrop.RVsquare_in = Inner.Properties.Inlet.rho*(Inner.PressureDrop.Vnozzle_in)^2; |
---|
| 956 | |
---|
| 957 | "Inner Side Outlet Nozzle rho-V^2" |
---|
| 958 | Inner.PressureDrop.RVsquare_out = Inner.Properties.Outlet.rho*(Inner.PressureDrop.Vnozzle_out)^2; |
---|
| 959 | |
---|
| 960 | "Outer Side Inlet Nozzle rho-V^2" |
---|
| 961 | Outer.PressureDrop.RVsquare_in = Outer.Properties.Inlet.rho*(Outer.PressureDrop.Vnozzle_in)^2; |
---|
| 962 | |
---|
| 963 | "Outer Side Outlet Nozzle rho-V^2" |
---|
| 964 | Outer.PressureDrop.RVsquare_out = Outer.Properties.Outlet.rho*(Outer.PressureDrop.Vnozzle_out)^2; |
---|
| 965 | |
---|
| 966 | end |
---|